2021年即将改变人类十大新兴技术

2021年即将改变人类十大新兴技术,第1张

当前全球面临的许多巨大挑战:气候变化、能源枯竭、粮食生产、生命 健康 等,世界经济论坛评选的2021年“十大新兴技术”中主要围绕当前全球面临的主要问题展开,这十项技术都有望深刻改变人类的未来。

国际 社会 为应对全球气候变化作出的全面承诺将进一步催生新技术。二氧化碳作为温室效应的罪魁祸首,各个国家和行业一直在为减少碳排放作出积极的努力。美国、英国、欧盟等主要发达国家以及中国、印度等发展中大国向国际 社会 作出承诺,实现到2030年碳排放总量大幅下降。

同时,农业及食品领域还将进一步发展人造肉(Impossible Burger、Beyond Meat)等蛋白质替代品的市场供应。通过物联网连接的传感器数据将越来越多地支持土地、作物、肥料、灌溉用水等智能化管理,这些都将有助于进一步减少碳排放。

磷肥 为世界粮食作为的主要肥料, 磷肥的制备 很大程度上依赖于含氮工业肥料的使用。据联合国粮食及农业组织称,全球每年需要约11亿吨氮来维持全球作物生产。而氮肥通常是通过将空气中的氮转化为氨来生产的,含氨肥料维持了全球大约 50% 的粮食生产,而制备含氨肥料的过程将消耗世界主要能源需求的1%,工业化过程排放的二氧化碳占全球碳排放量的 1% 到 2%。

为了降低这部分的碳排放量, 研究人员正在通过自然方法中获取制造氮肥的解决方案。例如,玉米、谷物等主要粮食作物依赖土壤中的无机氮,豆科植物的根与土壤细菌相互作用,形成根瘤,通过细菌固氮的能力将大气中的氮转化为氨,这些自然固氮方法给了研究人员很大的启发。

目前,发达国家政府和 社会 资本的投入为工程固氮领域的研究和开发提供了强有力的支持, 未来利用自然共生力量的作物可能很快就会成为更可持续粮食生产的关键要素。

新技术将推动人体呼气的检测方式进行疾病诊断,这种采样方式远比抽血要节省时间。 采用新技术进行生物检测类似于警察查酒驾的酒精呼吸分析仪,未来疾病诊断也可以采取这样的方式。

人体的呼吸中含有 800 多种化合物,最近的研究表明人体呼出的气体含有的不同化合物浓度与疾病之间存在很强的相关性。例如,丙酮浓度升高是糖尿病的强烈迹象,一氧化氮浓度升高 可以作为呼吸系统疾病的生物检测标识;各种醛类指标升高说明患有肺癌的概率极大。

而且采用呼吸检测的方式将会大幅减少检测等待时间,通常仅需几分钟呼吸检测 传感器的数据通过外部计算机分析就可以生成检测报告。

除了比抽血更快地出具结果之外,呼吸传感器采取的是非侵入的检测方式,在医疗资源有限的国家,它的易用性、便携性和成本效益将提供更好的医疗保障。呼吸检测还有助于减轻社区的病毒传播,其方式类似于在进入超市或餐馆等公共空间之前对个人进行体温检查的方式。

2020 年3 月,以色列的科研人员已经完成了 探索 性临床应用,采用呼吸检测的方式检测新冠病毒(COVID)检测结果达到95% 准确度和100%灵敏度。目前该项技术正在进行广泛的临床试验,但距离全面普及尚需技术进一步成熟。

如果您去药房时,药剂师不是通过预制药物的方式来填写您的处方,而是按照您的诊断情况 采用量身定制的方式配制最符合您体征的药物,这听起来是不是很神奇?

由于药品的特殊性,传统上药物生产都集中在具备资质的厂商,通过大批量生产的方式完成。药物的成分和剂量都是标准化的,不可能为个人定制成分和剂量不同的药物。然而微流体和按需药物制造的最新技术有望使这一想法成为现实。

按需药品制造,也称为连续流程药品制造,可以一次性完成药品生产。它的工作原理是将药品成分通过流体方式输入小型合成设备,由合成设备按照要求调配成分,可以实现为患者量身定制所需药品。

而这项技术更大的意义是,可以在偏远地区或野战医院进行部署,随时根据需求生产药品。这也意味着储存和运输药物所需的资源更少,而且剂量可以针对个别患者量身定制。

2016 年,美国麻省理工与国防高级研究计划局(DARPA),已经成功研发了一台冰箱大小的药品合成设备,并在24 小时内制备了1000剂常用药物:盐酸苯海拉明,用于缓解过敏症状;地西泮,用于治疗焦虑和肌肉痉挛;抗抑郁药盐酸氟西汀;局部麻醉剂盐酸利多卡因。

目前用于按需药物制造的便携式设备成本在数百万美元,阻碍了广泛推广。而且还需要新的质量保证和质量控制标准来规范配方的个性化和单人药品制备。但是,随着成本的下降和监管框架的完善,未来药物按需制造将会为药品行业带来颠覆性的变革。

如今构成物联网 (IoT) 无线设备已经成为网络世界的支柱。物联网无线设备被部署为家庭中的生活工具、生物医学的可穿戴设备以及危险和难以到达区域的传感器。随着物联网的发展,它将更广泛应用于农业节水灌溉和农药喷洒、智能电网、桥梁或混凝土基础设施缺陷监测、泥石流和地震等灾害的预警。

预计到2025年,全球将有400亿台物联网设备上线,为这些设备提供便捷的按需供电是一项新挑战。5G 无线信号比4G传输会发射更多的辐射能量,这就预示着许多低功耗无线设备将永远不需要插入的方式供电。

目前科研人员成功采集从Wi-Fi路由器以及微波射频设备的辐射能量为低功耗物联网设备供电,这项新兴技术将把辐射能量收集提升到一个新的水平,为物联网设备大量部署提供了能源解决方案。

未来生命科学将更加专注于增加“ 健康 寿命”,而不仅仅是寿命。

据世界卫生组织的数据,2015 年至 2050 年间,全球 60 岁以上人口的比例将从 12% 增加到 22%。老年痴呆、癌症、糖尿病、动脉硬化等慢性疾病对老年人的 健康 和 社会 发展构成了巨大挑战,逆转衰老或寻找“青春之泉”一直是人类的愿望。

科研人员通过 基因组编码技术 ,量化所有基因活性、细胞中蛋白质和代谢物的浓度,结合遗传学研究,已经越加清晰人类衰老的关键机制,科研人员已经发现人体的生物学年龄的标识符是人体疾病和死亡风险的关键预测指标。

最近科研人员通过对人体衰老机制的不断理解,积极推动了靶向治疗的发展。例如,最近的一项初步临床研究表明,服用包括人类生长激素在内的药物混合物一年,可使人体“生物钟”倒转15 年。科学家们还发现将年轻人类血液中的蛋白质注入老年小白鼠时,可以改善与年龄相关的大脑功能障碍。结果表明,通过科学的方式可以逆转人类与年龄相关的认知能力下降等疾病。

目前通过 基因工程的方法来分析和设计,加之政府和医疗资本的大力推动下,全球已有100 多家公司研发的药物进入临床前阶段或早期临床试验阶段。这项新技术让人类越发的有希望对抗衰老,甚至挑战“生命的终极课题---死亡”。

工业规模合成氨可以说是 20 世纪最重要的发明之一。氨用于生产肥料,为全球 50% 的粮食生产提供燃料,使其成为全球粮食安全的关键。然而,氨合成是一种能源密集型化学过程,需要催化剂来用氢气固定氮。

氢气必须合成生产,目前使用化石燃料、天然气、煤或石油在高温下蒸馏以产生氢气。问题是,这个过程会产生大量的二氧化碳,占全球总排放量的 1% 到 2%。

使用可再生能源分解水产生的绿色氢气有望改变这种状况。除了消除制氢过程中的碳排放外,该方式还能制备更纯净氢气,且不含使用化石燃料时掺入的化学物质,例如含有硫和砷的化合物,这些化合物会“毒化”催化剂,从而降低反应效率。

更清洁的氢气也意味着可以开发出更优质的催化剂,而且不再需要忍受化石燃料中的有毒化学物质。目前,丹麦的公司已经宣布开发出用于绿色氨生产的新型催化剂。

目前绿色氢气制造的主要障碍是高成本。为了解决这个问题欧洲能源企业启动了 科技 创新研发,旨在2030年之前以每公斤15欧元的价格提供绿色氢气。

对慢性病的连续、无创监测,一直是医学界的期望。好消息是无线、便携式和可穿戴监测传感器将很快得到临床应用。监测器使用多种方法来检测汗液、眼泪、尿液或血液中的生物标志物,可穿戴监测传感器使用光或低功率电磁辐射(类似于手机或智能手表)监测慢性疾病。

例如,电子隐形眼镜可以通过眼泪,获取癌症生物标志物或血糖水平以进行糖尿病监测;具有射频识别技术的护齿器唾液传感器可以监测唾液生物标志物对口腔溃疡、呼吸系统炎症、HIV、肠道感染、癌症和COVID进行预警。

根据联合国的估计,使用 3D 打印机建造房屋可以帮助解决 全球16亿人 住房不足的挑战。

3D 打印房的概念并不新鲜,灵感来源于火星移民的项目,因为火星没有建造房屋所需的大 部分材料。将混凝土、沙子、塑料、粘合剂等混合物通过大型 3D 打印机打印,可以作为一种相对简单和低成本的建造方法,似乎非常适合缓解偏远贫困地区的住房问题。

如今,至少有 100 亿个有源设备构成了物联网 (IoT),预计未来 10 年这一数字将翻一番。 为了最大限度地发挥物联网在通信和自动化方面的优势,需要将设备分布在全球范围内,收集数据。数据在云数据中心被处理,使用人工智能来识别数据异常从而为人类提供预警。例如气候异常和自然灾害。但问题是:地面蜂窝网络覆盖的面积不到全球的一半,在连接方面留下了巨大的空隙。

天基物联网系统可以使用距离地球数百公里的低成本、低重量(不到 10 公斤)纳米卫星网络弥补这些空隙。1998年发射第一颗纳米卫星到今天,大约有 2000 颗纳米卫星用作轨道监视。SpaceX Starlink、OneWeb、Amazon 和 Telesat 等公司已将纳米卫星用于提供全球互联网覆盖。

太空物联网建设仍然面临着众多挑战。例如,纳米卫星的寿命相对较短,约为两年,必须得到昂贵的地面基础设施支持。为了应对轨道太空垃圾日益严重的问题,国际航天机构正在计划在卫星功能寿命结束时自动脱离轨道或使用其他航天器收集它们。

一箭双星技术,这是一个国家航空技术发展到一定阶段的标志性进展,这个代表着这个国家具备了大规模向太空发射各类卫星的能力,一箭多星技术更是代表着这个国家航空技术的突破性进展。

发射一颗卫星,成本很高的,虽然现在发射卫星也不是什么特别困难的事情了,基本上像放炮仗一样。我国发射了那么多的卫星,实现一箭双星的比较少,大部分是一个火箭一个卫星,然后那种实现一箭多星的更少,因为那难度太大了,风险也比较高,一颗火箭发射,一颗卫星,他成功的可能性很大,失败的可能性很小。但是一箭双星这个难度就是成倍提升的,因为它成本的下降也是成倍的呀。

能实现这种技术,意味着以后我们在向太空大规模发射探测器,发射卫星的时候更加具备优势,别人耗费同样的时间和精力,它只能发射一颗,我们可以发射两颗,甚至我们现在已经掌握了一箭多星技术,可以同时发射好几颗,这成本竟然下降了好多啊。因为发射一次火箭成本很高的,一次可以带多颗卫星上太空,就大大降低了它的发射成本,也让我们探索外太空的时候有了更大的优势。

可以说未来50年到100年太空的探索将成为顶级大国之间较量的新战场,因为地球上能探索的地方有很多,但是大家通过卫星基本上有了一个大概的了解。而外太空是茫茫宇宙,存在着很多的未知,但凡有一个国家在外太空发现了一点点有用的东西,那所带来的意义都是划时代的,可能对人类现有的科技体系是一个巨大的冲击。这一切的前提都建立在这个国家拥有足够强大的能力去探索外太空,首先就是需要这个企业探测卫星。

天基物联网

扩展资料:

生态圈一般指生物圈。地球上所有的生物与其环境的总和就叫生物圈。生物圈是所有生物链的一个统称,它包含了生物链和所有细微的生物和生态环境,生态系统等。

生物圈是地球上最大的生态系统,也是最大的生命系统。且是一个封闭且能自我调控的系统。地球是整个宇宙中唯一已知的有生物生存的地方。

一般认为生物圈是从35亿年前生命起源后演化而来。生物圈是指地球上所有生态系统的统合整体,是地球的一个外层圈,其范围大约为海平面上下垂直约10公里。

北斗卫星导航系统已经无处不在,从地图导航到外卖,再到车库停车,无处不在。全球有超过372亿手机使用北斗导航系统。北斗系统的发展是一个不断创新、开拓进取的过程。北斗一号的主要成就是两颗卫星实现了广泛的高精度定位和授时服务,覆盖中国和周边地区。根据GPS定位原理,需要12颗卫星,双向授时精度10ns,全球领先。定位和报告可以在同一渠道同时完成。用户知道我在哪里,指挥部门也知道我们在哪里,定位报告是北斗与GPS最大的区别。

北斗是世界上第一个具有三频完整服务能力的导航系统。北斗是全球首个连续导航定位报告双模式集成系统。双模用户计算机带来了巨大的社会效益和经济效益。主要成就是独立建立了时间和空间的全球基准,因为只有全球系统是全球系统的代表,那些区域系统没有能力建立时间基准,所以北斗系统没有。北斗七星实际上是从第一阶段到第四阶段的航行,因此北斗七星的成就是跨代的。

我国北斗建成后,基本上达到了L频计级的导航精度。在2030年或2035年,一个导航、通信、遥感融合深度的空间系统将来自中国,中国的高速网络采用5g地面网络,实现全球天空物体和内容的连通性,第六代移动通信,中国的6G道路和西方国家的不一样,中国是先建设地面系统,然后建设空间系统,中国的空间系统是基于北斗时空基准的,所以中国的5G将会成功,中国的6G也会成功。

未来会有一个北斗全球物联网。互联网是人与人之间的一种联系,人们非常包容。为了实现全球动态事物之间的互联,全球物联网必须在时空基准下进行维护。世界一流的动态分米级北斗卫星导航系统已经实现,提供了统一时空基准的天基物联网,获得了天基无线电全球系统对地球的认知,北斗未来天基物联网模块实现了空间物体与空间的互联,空间与地球内容联网,任务超出了地球导航方法的研究。其意义在于充分发挥北斗空时基准的基本价值,打破世界上独立建筑行业导航、通信、遥感的固化状态,为包括遥感在内的大部分行业提供公共数据链接。北斗多业务卫星无线电系统是我国重要的空间信息基础设施。北斗三号在基础导航、星基增强、精确单点定位、信息通信、国际搜救等服务领域的综合创新,是未来发展的良好开端。

2021年对中国通信产业而言是个标志性的年份。随着同年8月工信部宣布我国5G基站数与终端连接数占全球比重均超过70%,中国已建成全球规模最大的地面通信网络。而新的目标,正在向空间通信进发。

值得注意的是,将低轨卫星通信需使用的非地面波(NTN)技术纳入5G范畴,正是全球通信标准制定组织3GPP正在努力的目标。2021年9月,3GPP公布5G技术标准的R17版本将于2022年冻结发布,标准将首度引入非地面波技术,以作为5G标准的一部分。业内广泛认为,这对于移动与卫星通信产业而言,将是一座重要里程碑。

TrendForce研报预估,截至2022年全球卫星市场产值将有望达2950亿美元,年增长率达33%。尤其是在我国,受物联网需求与有限轨道资源驱动。预计2021 2035年我国卫星互联网总产值或可达93377亿美元。

标准先行 与5G互补融合

卫星互联网的提出由来已久,早在上世纪80年代末,摩托罗拉便提出了“铱星”计划,但在地面网络尚未完善的彼时,该计划也因实现成本过高而终告流产。直至近年来伴随5G网络的演进,卫星通信的优势才重新显现,并获得重视。

中国信科集团副总经理陈山枝博士此前接受采访时曾表示,低轨卫星通信的定位应该是与5G实现差异化互补,到6G时代,陆地移动通信和低轨卫星通信则将实现有机融合,包括架构融合、空口融合及终端融合等层面。

更为重要的是,对于目前的5G网络而言,支撑各垂直行业的物联网应用连接则是更为紧迫的任务,据中国互联网协会今年7月发布的最新报告显示,到2025年,我国移动物联网连接数将高达801亿个,年复合增长率达141%;全球则预计将有309亿台物联联网设备接入。

天风证券研报指出,低轨卫星互联网将成为2022年电子行业的关键趋势之一。预计在相关企业推动下,低轨卫星服务与相关零部件出货量将在2022年显著成长,低轨道卫星服务供应商将优先受益。

企业探路 卫星发射迈入活跃期

与任何产业的崛起路径类似,企业的先行 探索 也成为我国低轨卫星市场寻求突破的重要特征与趋势。

供应链拆解信息显示,卫星产业生态链包括卫星制造、卫星发射、卫星地面站、卫星服务四大领域,目前产业阶段以卫星制造与发射为主,在国内,领衔这一环节的为两大央企巨头——中国航天 科技 和中国航天科工。

公开信息显示,在星链计划诞生的2015年同年,中国航天 科技 和中国航天科工便同时公布了各自的低轨卫星项目——“鸿雁”和“虹云”,两者计划各自发射300颗和156颗低轨通信卫星,并将于2023年建设完成,其中,两大系统的首颗实验星都已于2018年底试射成功。

值得注意的是,在“鸿雁”和“虹云”两大工程完工前,我国还于2018年部署了首个低轨卫星物联网系统工程“天启 星座 ”。官方信息显示,这一系统由38颗低轨卫星组成,目前已成功发射15颗,并计划于2022年部署完成,届时能够解决70%以上陆地、全部的海洋及空中物联网数据通信覆盖盲区问题。

同时,中国航天科工也牵头推出了天基物联网 星座 “行云工程”,中国航天三江集团所属航天行云 科技 有限公司董事长钱微表示,目前项目第一阶段建设任务已圆满完成。计划在2022年完成第二阶段共12颗卫星的发射任务,并完成小规模组网。据其透露,届时该工程将会在集装箱运输监管、地质灾害监测、电网传输安全监管、油气勘探以及水利水务监管等诸多领域发挥作用。

而在央企之外,民营卫星发射企业也开始站上舞台中央。以银河航天为例,继今年5月与中国信通院成功合作开展一系列低轨卫星 星座 体制技术试验后,该公司又于今年10月与北京邮电大学合作,初步完成了5G卫星接入组网通信测试。

“随着国家队与民营航天企业同时在低轨卫星发射上发力,预计2022年国内卫星发射次数有至少2倍的倍数级增长。”张毅预计。

领航产业 政策加速落地

为了护佑引领低轨卫星产业的 健康 发展,我国中央与地方层面近年来也出台了多条产业政策。

国家层面,2020年4月,我国首次提出“新基建”计划,卫星互联网被纳入其中的通信网络基础设施范畴。2021年3月,我国“十四五”规划出炉,明确提出将建设高速泛在、天地一体、集成互联、安全高效的信息基础设施,打造全球覆盖、高效运行的通信、导航、遥感空间基础设施体系,建设商业航天发射场。

2021年11月,工信部对外发布《“十四五”信息通信行业发展规划》(以下简称“《规划》”),进一步在“十四五”规划总体目标基础上细化,提出包括全面部署5G、千兆光纤网络、IPv6、移动物联网、卫星通信网络等新一代通信网络基础设施5项重点任务。

《规划》指出,加快布局卫星通信,加强卫星通信顶层设计和统筹布局,推动高轨卫星与中低轨卫星协调发展;推进卫星通信系统与地面信息通信系统深度融合,初步形成覆盖全球、天地一体的信息网络,为陆海空天各类用户提供全球信息网络服务;积极参与卫星通信国际标准制定;鼓励卫星通信应用创新,促进北斗卫星导航系统在信息通信领域规模化应用,在航空、航海、公共安全和应急、交通能源等领域推广应用。

《北京市关于加快建设全球数字经济标杆城市的实施方案》则指出,超前布局6G网络,支持发展下一代信息通信网络、通信感知一体化、通信与人工智能融合、星地一体融合组网、通信网络内生安全等通信融合技术,协同开展6G相关的高端芯片、核心器件、仿真验证平台等攻关研制。

对于各地的政策加持,张毅分析称,卫星的发射需要极高的技术积累与资源调配能力,短期内在政策利好背景下诞生的企业很难具备航天发射需要的能力,而从地方政策的内容指向看,也更多会是材料、遥感、无线、芯片等产业链配套企业,后者在2022年会有明显的数量增长。

此外,张毅认为,中央与地方产业政策的密集出台,反映了卫星产业建设将在各地加速落地。随着商业卫星发射在2022年进入活跃阶段,2022年低轨卫星市场规模也将迎来进一步的增长。

来源:环球网

图集

日新月异的光谷。

当前武汉致力打造国家“双循环”新发展格局重要枢纽,加快建设国家中心城市、全国科创中心和国际化大都市,长期向好的基本面没有改变,多年积累的综合优势没有改变,在国家和区域发展中的重要地位没有改变。

更重要的是,随着国家战略聚焦和中央一揽子支持政策的落地,武汉加快发展的机遇之好前所未有,扩大开放的信心之强前所未有,投资武汉的空间之大前所未有。

“要看银山拍天浪,开窗放入大江来”。作为建设中的国家中心城市、长江经济带三大核心城市之一、国家 历史 文化名城的武汉,必然继续致力于携一江两岸、三大国家级开发区、五大产业基地,奋进新时代,开启新征程。

在此背景下,世界从武汉见证中国的勃勃生机:

10月5日

武汉市召开工作专题会,研究武汉六环线及放射线建设等工作。 武汉六环线是长江经济带综合立体交通项目,分为东、南、西、北4个路段及新港高速公路双柳长江大桥、汉南过江通道两座长江大桥。

9月9日

武汉市交通运输局发布《新港高速双柳长江大桥及接线工程环境影响评价第二次公示》,该环评公示称:该项目计划于2020年10月开工,2024年10月建成,全线采用高速公路标准建设,设计行车速度为120公里/小时,桥面采用双向8车道设计,主跨1360米。

这意味着,连接长江右岸中国光谷长江存储器产业基地和长江左岸武汉国家航天产业基地的武汉第12座长江大桥即将横空出世。

双柳长江大桥及接线工程示意(以规划最终方案为准)。

双柳长江大桥开工在即

一线串起长江两岸科创大格局

武汉市交通运输局介绍,双柳长江大桥是《湖北省综合交通运输“十三五”发展规划》重点建设项目。项目建设将进一步优化武汉城市圈高速公路结构,增强过江通道供给能力,强化路网衔接与转换,并为沿线地区经济产业发展提供基础设施保障。

就像武汉每修建一座大桥一样,围绕大桥两端的区域,总是好消息不断:

9月5日,注册于国家航天产业基地的航天行云 科技 有限公司在北京宣布,在今年5月成功发射两颗卫星基础上,将在明年发射12颗卫星,逐步组建总计80颗卫星的天基物联网,解决全球范围内的物联网通信盲区问题。

9月10日,长江存储国家存储器基地推出了首款使用自产芯片的消费级商用产品“致钛”固态硬盘;

这个过程中,国家航天产业基地内已基本建成的航天科工火箭公司快舟系列运载火箭总装总调中心,将用主打产品“快舟火箭”发挥出强有力作用。

目前,位于国家航天产业基地的航天行云 科技 有限公司行云工程研制保障条件(一期)项目,包含运营及试验厂房、动力中心等,也已启动。

今年7月,光谷科创大走廊核心区规划出炉;同期,武汉国家航天产业基地同样进展神速,火箭、卫星、新材料等正在快速推进,实现量产、产值指日可待。

由此,在长江武汉段的下游,大河两岸群星闪耀:右岸是光谷 科技 创新大走廊,向西源起于武汉市武昌、洪山等科教资源密集区,向东拓展至鄂州、黄石、黄冈等 科技 产业集聚区;左岸由长江新城一路向东,以国家航天产业基地、团风产业新城、问津产业新城为组团,正在打造一条“武汉东产业新城集群”。

位于长江两岸的科创大格局正在加速形成。

六环驱动东部“火箭速度”

武汉两大科创群星组团融入大循环

区位和产业人才优势,一直是武汉的核心优势。

中国入世谈判首席代表、原外经贸部副部长龙永图日前在武汉表示:

武汉有两大优势:

一是当之无愧的区位优势,武汉地处华中、九省通衢、交通四通八达,在经济全球化不可逆转的形势下,武汉将有可能成为全球产业制造中心;

第二大优势则是武汉的人才优势,武汉的人力资源优势居全国第三,这一优势将是数字经济发展的关键。

基于交通和人才的产业发展导向,江城武汉具有十足底气,以桥带两岸、两桥串成环、环线促发展,这也是近年来武汉城市发展格局和产业资源调度重要特点。

武汉六环线是长江经济带综合立体交通项目,分为东、南、西、北4个路段及新港高速公路双柳长江大桥、汉南过江通道两座长江大桥。

10月5日,武汉市 召开工作专题会 , 会议强调,要 抢机遇、抢时间、抢要素,高起点谋划、快节奏推进六环线及放射线建设,为武汉疫后重振提供强有力的基础设施支撑,推动武汉城市圈一体化进程和长江经济带高质量发展。

规划进度最快的双柳长江大桥(新港长江大桥),将有望率先发力,可将以国家存储器基地为新驱动的光谷创新走廊和以国家航天产业基地为代表的多个产业新城串联起来,整体纳入到武汉都市圈的“内环”中来,成为推动长江经济带高质量发展的重要助力。

除了扩大武汉的环线范围和联动效应,环线内部交通组织的密度和精度还在进一步提升,这也为长江左右两岸产业协同发展、武汉东部产业新城集群与中国光谷形成互动联动创造内循环和小循环。

据介绍,武汉市正在积极与国家铁路集团对接,将已纳入《长江干线过江通道布局规划(2020—2035年)》的光谷长江大桥建设尽快启动,目前处于方案论证阶段,这条公铁两用城市道路部分拟采用设计速度80公里/小时、双向8车道城市快速路标准建设。

双柳长江大桥加上已规划的光谷长江大桥,两桥夹一江、两桥串两廊,武汉有望在国内大循环中形成沿江产业发展的“产业小循环”,利用夹江发展的双轮驱动力, 在武汉东部呈现出高质量发展的“火箭速度”。

光谷长江大桥公铁合建示意(以规划最终方案为准)。

现在光更快、未来天更高

迈向“第三极”的武汉东紧追光谷东

今年上半年, 光谷GDP总量和增速均居武汉市各区之首, 达到了2019年上半年的九成,其中二季度地区生产总值较上年同期增长135%。

在当前经济重振过程中,光谷速度得益于其强大的产业基础。上半年,在汉的国家信息光电子创新中心,联合国内厂商共同完成基于国产芯片的高速50G光模块样机,长江存储武汉基地项目二期、霍尼韦尔新兴市场中国总部揭牌、迈瑞医疗“全球第二总部”同日在汉开工;将“鲲鹏”引入武汉的华为已在提供云服务场景;武汉华星光电的国内首条柔性折叠显示屏生产线正在量产爬坡;小米武汉总部签下二期战略合作协议;光谷出台“互联网+教育十条”新政,5年再贡献一个千亿级产业集群……

同样的,国家航天产业基地、团风产业新城、问津产业新城等科创产业群星,正致力于打造“武汉东产业新城集群”,将以更新的规划定位和产业赋能,紧追光谷步伐。

10月5日,中国航天科工集团在武汉宣布,将继续加大在汉投资,和武汉共同努力,把第六届中国(国际)商业航天高峰论坛办出水平,把国家航天产业基地打造成国家高新技术示范引领项目,支持武汉迈向航天“第三极”。

武汉国家航天产业基地四大功能分区协同发展。

8月,作为快舟总装总调中心(一期)的补充条件项目,武汉国家航天产业基地快舟火箭产业园二期辅助厂房正式开工,将建设1万平方米的辅助厂房及数字化生产线一条,主要用于快舟系列固体运载火箭发射、测试车辆的维修、保养,部分关键产品试验以及产品仓储等,预计于2021年3月底前完工。快舟火箭产业园的投产,意味着“武汉造”火箭将实现量产。

火箭产业园实景。

据了解,武汉国家航天产业基地卫星产业园主体结构已封顶,年内将具备投产能力;行云测运控中心已安装完毕;和泰新材料、磁电等项目正加速建设中。

目前,基地已初步形成8平方公里产城融合示范区,先后完成了路网环线、航天公园、产业港公园、社区足球场等项目建设,园区格局初步呈现;同时,全面启动九年一贯制学校、三甲医院、文体中心、幸福里商业等配套设施建设,现代化城市生活正逐步呈现。

随着国家航天产业基地、团风产业新城、问津产业新城等打造的武汉东产业新城集群的持续发力,武汉东部的双轮驱动力道十足,长江左岸武汉东将紧追长江右岸光谷东。

说了这么多,都不如一场现场直播live来得过瘾。敲黑板、敲黑板、敲黑板——重点来了:

10月15日晚,19:00—21:00,“武汉东一江两岸 科创大走廊”武汉国家航天产业基地投资峰会,将跟随多位经济、产业、城市规划等方面的专家、学者、企业家,探究武汉东的投资发展之势。

直播现场已搭建完毕,多机位现场待命。就等你来!

光谷30年,在武汉再造了一座产业新城,得益于光通信产业的快速发展,可谓 “跑得很快”;未来中国商业航天产业前途更加不可限量,必然会“飞得更高”。在两桥飞架、公园建成、大道通车、火箭发射、卫星上天、医院落成等不断利好加持之下,长江左岸航天大道串联的武汉东产业新城集群,实现产业两翼齐飞的宜居宜业之城,必然崛起于武汉东方。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/13302870.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-07-11
下一篇 2023-07-11

发表评论

登录后才能评论

评论列表(0条)

保存