VR三维数字沙盘:四度科技的物联网3D数据联动展示

VR三维数字沙盘:四度科技的物联网3D数据联动展示,第1张

VR三维数字沙盘(VR全景显示)又称三维数字沙盘、三维数字地图和数字地理信息系统。数字沙盘系统是一种能够创建和体验虚拟世界的计算机仿真系统。它利用计算机生成一个仿真环境,是一个多源信息融合、交互式三维动态场景和实体行为系统仿真,使用户可以沉浸在环境

整体风格设计、flash动画制作、图像图标等素材的设计和制作之中,和PC网页界面设计。根据需求,以思维导图和流程图的形式对业务进行详细梳理,确定开发主体的轮廓。平台原型是根据分类业务需求设计的

根据数据内容规划和数据采集实施规划,我们将实现全景数据采集与制作、三维数据采集与制作、平面采集与制作,音视频数据采集与制作、大数据内容对接、文字信息编辑、整体风格设计、flash动画制作、图标等素材设计与制作

户外全景航拍(UAV航拍),航拍-航拍全景采集及末期渲染,实景技术场景拍摄,航拍全景采集及后期制作渲染。人工对合成全景图进行裁剪、接缝偏移错位、色彩校正、换天、室外全景图重新填充天空、色调调整。分步地面挖掘-分步全景和末期渲染,用真实场景技术拍摄物理环境,地面全景拍摄和后期制作渲染。以720全景图连接所有场景
构建了系统的总体框架,对系统的功能进行了细分,控制了功能间的业务逻辑。打开关闭体感功能,打开关闭音轨,打开关闭地图,并提出意见
1通过语音引导展会介绍和展区部分文字介绍

2在展厅之内设置开幕现场视频和活动现场视频

3全面观看各展厅介绍,并以图形、视频和三维信息展示介绍

4调出平面导航地图,快速定位视点(二维导航地图)

5搜索、快速定位和浏览

6全景和三维引擎服务(webgl3d技术),支持全景数据和三维模型浏览,交互、信息点显示、文本编辑服务

7测试联调:功能测试、性能测试、压力测试、在线联调

三维交互系统:交互过程、 *** 作模式、细节、热交互(热交互、图形热、文本热、视频热等),互动策划,用户评论之上传分享,促进用户互动,实现720实景三维互动,直观沉浸获取信息,符合5g时代的信息规律。移动适配主要是根据不同型号、不同分辨率的页面布局,保证主流移动设备能够更好的呈现本次展会的相关内容

1在参观过程之中,通过文字、等媒体,我们可以获得展会的内容,它可以达到比实物展览更丰富的内容体验效果。参观展品时,点击展品,虚拟展厅可提供与展品相关的

2文字、视频或声音 为方便公众直接在虚拟展厅之内以视频、声音、、文字相结合的方式对展览内容进行丰富全面的了解

通过三维虚拟技术与多媒体相结合,采用视觉二维平面图进行导航,并将展厅内部空间结构和功能分区表现得淋漓尽致。同时,在二维导航地图之上实时显示游客的位置。整合各子功能模块,统一发布Web终端(PC网页+移动终端H5)。PC终端和H5移动终端的开发包括产品模块、功能控制、用户界面逻辑跳转、热点交互等功能的开发,多终端应用场景,不同的终端形式可以满足丰富应用场景的需求。

简介:  没有设备,也能立刻体验物联网平台的功能:使用物联网平台提供的“在线调试”功能,体验虚拟设备上云&设备数据存储分析的功能。

产品推荐:阿里云物联网开发者工具( IoT Studio ), 立刻免费体验吧!

你可能遇到以下情况:

1、手头没有开发板

2、还不懂“物联网云服务”怎么玩,想体验一下

3、设备端开发跟物联网云服务没跑通,不确定哪个环节出现问题

这时,你就需要用到“在线调试”功能来虚拟一个设备,详细步骤如下:

1、登陆物联网平台控制台 , 现在登入

2、左侧导航栏中,找到在线调试功能

3、开始设备上云开发,这个环节分为3个步骤:创建产品→创建设备→激活设备(使用在线调试)

31 创建产品

下方的都是默认选项,不用改动,点击完成,成功创建1个产品

32 产品和设备是包含与被包含的关系,我们创建成功产品后,即可在这个产品下添加设备

设备添加成功后,即d出设备的三元组(设备证书),这个三元组是全网唯一的设备身份校验要素

ProductKey:是物联网平台为产品颁发的全局唯一标识。该参数很重要,在设备认证以及通信中都会用到,因此需要您保管好。

DeviceName:在注册设备时,自定义的或自动生成的设备名称,具备产品维度内的唯一性。该参数很重要,在设备认证以及通信中都会用到,因此需要您保管好。

DeviceSecret:物联网平台为设备颁发的设备密钥,和DeviceName成对出现。该参数很重要,在设备认证时会用到,因此需要您保管好并且不能泄露。

考虑设备实际生产时对安全和成本的不同需求,我们可以选择“一机一密”,或者“一型一密”。

一机一密:每个设备烧录其唯一的设备证书(ProductKey、DeviceName和DeviceSecret)。当设备与物联网平台建立连接时,物联网平台对其携带的设备证书信息进行认证。

一型一密:同一产品下所有设备可以烧录相同产品证书(即ProductKey和ProductSecret)。设备发送激活请求时,物联网平台进行产品身份确认,认证通过,下发该设备对应的DeviceSecret。

33 激活设备

我们发生几个开灯关灯的指令,就可以看到设备上报的数据:

4、使用物联网平台的“数据分析”功能存储数据

点击确定后,设备数据即成功存储

再点击“查看”,即可看到数据的存储

查看表结构

查看表数据

查询表数据

了解更多数据分析能力:

1、阿里云物联网平台数据分析服务主页

2、技术文档

物联网(The Internet of Things,简称IOT)的概念是把所有物品通过射频识别等信息传感设备与互联网连接起来,实现智能化识别和管理。

国际电信联盟2005年一份报告曾描绘“物联网”时代的图景:当司机出现 *** 作失误时汽车会自动报警;公文包会提醒主人忘带了什么东西;衣服会“告诉”洗衣机对颜色和水温的要求等等。

物联网把新一代IT技术充分运用在各行各业之中,具体地说,就是把感应器嵌入和装备到电网、铁路、桥梁、隧道、公路、建筑、供水系统、大坝、油气管道,家用电器等各种物体中,然后将“物联网”与现有的互联网整合起来,实现人类社会与物理系统的整合。

具体的说就是在农业、物流、能源、环保、医疗等重要领域都将推进物联网规模化应用。物联网将加速向各领域渗透应用,催生出无人零售、精准医疗、智能制造等大量新模式新业态,生产生活的“痛点”“难点”正在破题,一系列“独角兽”企业有望诞生。

扩展资料:

物联网在农业、工业、服务业、公共事业中均有很好的应用前景:

一、物联网在农业中的应用

1、农业标准化生产监测:是将农业生产中最关键的温度、湿度、二氧化碳含量、土壤温度、土壤含水率等数据信息实时采集,实时撑握农业生产的各种数据。

2、动物标识溯源:实现各环节一体化全程监控、达到动物养殖、防疫、检疫、和监督的有效结合,对动物疫情和动物产品的安全事件进行快速、准确的溯源和处理。

3、水文监测:包括传统近岸污染监控、地面在线检测、卫星遥感和人工测量为一体,为水质监控提供统一的数据采集、数据传输、数据分析、数据发布平台,为湖泊观测和成灾机理的研究提供实验与验证途径。

二、物联网在工业中的应用

1、电梯安防管理系统:该系统通过安装在电梯外围的传感器采集电梯正常运行、冲顶、蹲底、停电、关人等数据,并经无线传输模块将数据传送到物联网的业务平台。

2、输配电设备监控、远程抄表:基于移动通信网络,实现所有供电点及受电点的电力电量信息、电流电压信息、供电质量信息及现场计量装置状态信息实时采集,以及用电负荷远程控制。

3、企业一卡通:基于RFID—SIM卡,大中小型企事业单位的门禁、考勤及消费管理系统;校园一卡通及学生信息管理系统等。

三、物联网在服务产业中的应用

1、个人保健:人身上可以安装不同的传感器,对人的健康参数进行监控,并且实时传送到相关的医疗保健中心,如果有异常,保健中心通过手机提醒体检。

2、智能家居:以计算机技术和网络技术为基础,包括各类消费电子产品、通信产品、信息家电及智能家居等,完成家电控制和家庭安防功能。

3、智能物流:通过GPRS/3G网络提供的数据传输通路,实现物流车载终端与物流公司调度中心的通信,实现远程车辆调度,实现自动化货仓管理。

4、移动电子商务:实现手机支付、移动票务、自动售货等功能。

5、机场防入侵:铺设传感节,覆盖地面、栅栏和低空探测,防止人员的翻越、偷渡、恐 袭击等攻击性入侵。

四、物联网在公共事业中的应用

1、智能交通:通过cPs定位系统,监控系统,可以查看车辆运行状态,关注车辆预计到达时间及车辆的拥挤状态。

2、平安城市:利用监控探头,实现图像敏感性智能分析并与110、l19、l12等交互,从而构建和谐安全的城市生活环境。

3、 城市管理:运用地理编码技术,实现城市部件的分类、分项管理,可实现对城市管理问题的精确定位。

4、环保监测:将传统传感器所采集的各种环境监测信息,通过无线传输设备传输到监控中心,进行实时监控和快速反应。

5、医疗卫生:远程医疗、药品查询、卫生监督、急救及探视视频监控。

参考资料来源:百度百科——物联网

参考资料来源:人民网——我国在物联网前沿领域实现领跑

导读新年伊始,在2020年受疫情影响的大环境下,物联网也迎来了更多充满戏剧性的挑战与变革,在疫情爆发后,各地采取的一系列措施及发生的这大大小小的的事件背后,多多少少都有物联网的身影,为此,在这里小编整理了相关报告后,和大家说说2020年物联网在全球的主要进展,分享给大家以供参考和借鉴!下面我们一起来看看物联网2020年回顾:十大重要进展。

Part I: Covid-19对IoT 2020的影响

受疫情影响,公众对物联网的兴趣下降了15%

人们通过Google搜索“物联网”话题的频率在2020年骤然下降。自2020年3月疫情大流行以来,这一下降比例达到15%;此后,“物联网”话题搜索量一直保持相对稳定并处于较低水平,也没有回升迹象。物联网显然不像其它话题那样在公众中扮演重要角色,例如:在同一时间范围内,公众对游戏的搜索兴趣猛增了约65%、对“在家工作”的兴趣增加了104%、对“失业救济金”的兴趣猛增了250%。在对3000多个财报电话的分析显示,在2020年第二季度,“IoT”一词的使用量呈类似下降趋势。但是,有关物联网,尤其是“工业物联网”的讨论在第三季度又重新开始。

尽管疫情大流行,但2020 IoT市场仍然强劲

尽管Covid-19疫情不断,并且
2020年全球GDP下降了5%,物联网市场在2020年仍在增长(无论是支出规模还是连接设备总数)。虽然有少量物联网项目因各种原因(如在封锁期间无法建立基础设施)而停止或推迟,但大多数物联网项目在2020仍在继续。

事实上,2020年是智能设备的一个拐点——活跃的物联网连接数量(例如:连接的汽车、智能家居设备、连接的工业设备)等,有史以来第一次超过了非物联网连接的数量(例如:智能手机、笔记本电脑和台式机)。目前全球有217亿活跃的连接设备,其中54%(117亿)是物联网设备连接。到2025年,预计将有超过300亿个物联网连接,即地球上几乎每人有4个物联网设备。

十余个物联网主题随疫情加速发展

物联网在应对疫情中起着至关重要的作用。一些以物联网为中心的用例在帮助世界应对疫情方面发挥了(并将继续发挥)重要作用。最值得注意的包括工作场所、医院和其它基于物联网的接触者追踪(例如:Concept
Reply的跟踪和定位系统),以及整个疫苗供应链中的产品跟踪和验证(例如:Controlant)。

对2021年的前景持谨慎乐观态度

进入2021年,物联网技术的整体情况,看起来很乐观。人们普遍认为,任何因Covid-19对业务的负面影响都将在2021年逐渐消失,新的“数字化转型浪潮”将推动物联网市场的发展。企业将加速发展的主题之一是“新技术支持的商业模式”,其中许多新的商业模式将由互联的物联网产品来实现。企业关注的另一个主要主题是“人工智能”。

Part II: IoT 2020十大进展

最大的物联网新势力:小米

2020年1月,来自中国的电子制造商小米宣布计划在未来5年内至少投资72亿美元用于5G和人工智能(AIoT)。新的推动包括对智能电视、无人机、电动滑板车、空气净化器、路由器、安全摄像头等一系列消费和企业物联网设备的重大投资。

物联网在对抗Covid-19中的最大贡献:挽救生命

在2020年初,物联网行业没有人能够预见到,IoT技术将在这一整年中为拯救生命而扮演重要角色。伦敦帝国理工学院于2020年6月进行的一项被广泛引用的研究估计,在第一波Covid-19大流行期间,社交距离仅在欧洲就挽救了300万条生命。虽然这些被挽救的生命大多可以归功于人们只是待在家里、戴上口罩和避免接触,但物联网技术无疑在一些情况下阻止了进一步的传播。

许多物联网厂商竞相推出社交距离工具(包括BoschIO的工作场所隔离和联系人追踪解决方案,Software AG和Dell的Smart Social
Distancing解决方案,或Concept Reply的追踪和定位系统等)。

位于德国莱比锡的Goebecke面包店只是使用这种解决方案的众多企业之一。该企业老板介绍,工作场所的音频提醒和对员工数据的分析能力,都使员工更加谨慎、意识更强,这些员工随后变换了各自之间的距离。

最近,用于Covid-19的物联网的重点已经转移到疫苗供应链监控上,以确保疫苗安全交付,不发生产品丢失、篡改或变质。例如,辉瑞公司(Pfizer/Biontech)选择了冰岛的初创公司Controlant来监控其Covid-19疫苗的配送。

加速最快的物联网垂直领域:医疗保健

多年来,由于行业的高度规范性以及缺乏对医疗数字化的支持和紧迫性,在医疗环境中实施物联网项目被证明是很麻烦的。

现在,越来越多的证据表明,Covid-19已经导致了医疗保健领域的数字化爆炸,特别是在医院。美国食品药品监督管理局(FDA)在2020年5月发布了多项临时政策,以在2020年支持数字化工具。德国在2020年10月首次允许医生开出针对特定疾病的数字健康应用(例如,一款有助于治愈焦虑症的应用)。

在大流行期间激增的应用之一是“远程医疗”,即医生通过视频会议治疗患者。医生报告说,远程医疗通常被视为只是迈向数字诊断的第一步,它依靠物联网设备从远处诊断病人。数家医院于2020年开始进行试验。2020年12月,一名伦敦外科医生在加利福尼亚用5G技术对香蕉进行远程手术的视频在网上疯传。

2020年最大的物联网融资:Samsara

Samsara又成功了。2020年5月,在第一次Covid-19大封锁期间,该公司又筹集了4亿美元,旨在进一步扩大其工业物联网业务。本轮融资对该公司的估值为54亿美元,较2019年投资时估值下降14%。首席执行官Sanjit
Biswas在宣布这轮融资时,还宣布裁员300人(占劳动力的18%),这是由于Covid-19对关键垂直运输系统的影响。

2020年值得注意的顶级投资(与物联网相关)包括:

最重要的技术标准化:5G Release 16

2020年7月,3GPP标准机构达到了一个重要的里程碑:发布版本16,这是5G技术的第二套规范,也是5G
IoT的关键一步。构成版本16的一套新规范包括对“超可靠、低延迟通信”(eURLLC)、定位功能以及对TSN(时间敏感网络)的支持等方面的重大改进,所有这些方面对于各种物联网用例的物联网连接都非常重要,尤其是对于高端应用,如工业物联网领域的应用。此外,版本16还可以在新的5G核心网上部署和管理NB-IoT和LTE-M技术,使5G网络可以通过这些技术管理大规模和低复杂性的物联网。当前,全球约有2亿个IoT连接使用NB-IoT
/ LTE-M的产品。预计,面向高端应用的5G物联网将在2022年及以后兴起。

最著名的新流行语:AIoT

多年来,人们一直认为,物联网的真正价值可以通过应用于物联网数据流的AI/ML算法来解锁。因此,事后看来,“AI + IoT=
AIoT”在2020年出现并成为一个新流行语也就不足为奇了。在2020年12月,Google对这个话题的搜索量大概比12个月前多了70%。有趣的是,这个词似乎起源于中国(而不是像“
IoT”一词起源于美国)。华为和小米以及台积电(TSMC)这几年一直在推崇人工智能物联网的概念,即人工智能和物联网的融合。

2020年,许多“非中国”公司在品牌推广工作中都使用了这个术语。美国工业软件提供商Aspen Technology于2020年8月宣布了其新的工业40
AIoT
Hub,瑞士网络安全公司Wisekey于2020年9月推出了以AIoT为中心的新数字战略。在2020年推崇这一术语的公司的其它例子包括总部位于新加坡的ASM
Pacific Technology和总部位于美国的分析软件提供商SAS。

最大的物联网相关收购:Nvidia-ARM

2020年9月13日,英伟达宣布有意收购ARM,这是迄今为止最大的半导体交易,估值400亿美元。除了是最大的半导体交易外,此次收购有望为AI&边缘物联网带来新的技术创新。英伟达收购的主要业务板块是ARM的处理器IP,其中也有重要的IoT成分,尤其是边缘计算。ARM的IoT产品&服务集团(ARM的Pelion
IoT平台、MbedOS、SoC解决方案/安全、KigenSIM解决方案)将不参与此次交易。如果这笔交易获得监管部门的批准,可能会出现这样一种情况:中国企业永远得不到ARM的技术。这可能会进一步造成美中贸易关系的不平衡,从而使美国在半导体知识产权市场占据主导地位。

2020年的重要收购(与物联网相关)包括:

最雄心勃勃的新物联网连接技术:Amazon Sidewalk

2020年11月,亚马逊通知Amazon Echo设备和Ring安全摄像头的客户,Amazon
Sidewalk将很快推送到他们的设备上。Sidewalk是一个雄心勃勃的项目,旨在创建一个邻里共享的网络,让宠物或资产追踪器等物联网设备,即使在家庭Wi-Fi网络中断或超出范围时也能连接到互联网。这是通过将不同的Wi-Fi网络连接成一个低带宽网络,供不同用户的物联网设备使用的技术。

2020年9月,LoRa低功耗标准幕后的芯片公司Semtech宣布已与亚马逊建立合作伙伴关系,以合作构建网络;几个月后的12月,据报道LoRa联盟正在洽谈,也将加入并支持Sidewalk,使用开放的LoRaWAN标准,该联盟及其500多家成员公司都支持该标准。

最重要的政府举措:美国物联网网络安全改进法

2020年12月,《物联网网络安全改进法案》终于签署成为美国法律。其中,该法律要求美国国家标准与技术研究所(NIST)定期(至少每5年一次)更新物联网安全标准和指南。专家们希望,该法律能够促使制造商在设计物联网设备时考虑到一些网络安全功能(例如:使用安全编码实践、提供足够的认证、定期给设备打补丁)。

最大的IoT 2020 IPO:C3ai

2020年12月9日,C3ai上市(在纽约证券交易所交易,股票代码为“AI”)。C3是一个真正的物联网成功案例。该公司由美国亿万富翁Tom
Siebel于2009年创立,他因创立Siebel Systems公司而闻名,2006年1月该公司出售给甲骨文。C3ai最初叫C3
Energy,主要专注于电网、电表和公用事业的数字化,该公司后来(2016年)品牌更新为C3IoT,并将其关注点扩大到能源之外,作为一个横向物联网平台。近年来,该公司强调通用分析和人工智能能力,这也是为什么该公司再次将品牌重塑为C3ai。今天的C3ai声称它可以从5700万个传感器读取数据,但Siebel明确表示,重点是AI(包括非IoT应用)。2020年12月上市至今,股价已较开盘价飙升超过40%,估值近140亿美元(截至2021年1月8日)。

以上就是小编今天给大家整理分享关于“年度盘点|物联网2020年回顾:十大重要进展”的相关内容希望对大家有所帮助。小编认为要想在大数据行业有所建树,需要考取部分含金量高的数据分析师证书,这样更有核心竞争力与竞争资本。

常见的大数据术语表(中英对照简版):
A
聚合(Aggregation) – 搜索、合并、显示数据的过程
算法(Algorithms) – 可以完成某种数据分析的数学公式
分析法(Analytics) – 用于发现数据的内在涵义
异常检测(Anomaly detection) –
在数据集中搜索与预期模式或行为不匹配的数据项。除了“Anomalies”,用来表示异常的词有以下几种:outliers, exceptions,
surprises, contaminants他们通常可提供关键的可执行信息
匿名化(Anonymization) – 使数据匿名,即移除所有与个人隐私相关的数据
应用(Application) – 实现某种特定功能的计算机软件
人工智能(Artificial Intelligence) –
研发智能机器和智能软件,这些智能设备能够感知周遭的环境,并根据要求作出相应的反应,甚至能自我学习
B
行为分析法(Behavioural Analytics) –
这种分析法是根据用户的行为如“怎么做”,“为什么这么做”,以及“做了什么”来得出结论,而不是仅仅针对人物和时间的一门分析学科,它着眼于数据中的人性化模式
大数据科学家(Big Data Scientist) – 能够设计大数据算法使得大数据变得有用的人
大数据创业公司(Big data startup) – 指研发最新大数据技术的新兴公司
生物测定术(Biometrics) – 根据个人的特征进行身份识别
B字节 (BB: Brontobytes) – 约等于1000 YB(Yottabytes),相当于未来数字化宇宙的大小。1
B字节包含了27个0!
商业智能(Business Intelligence) – 是一系列理论、方法学和过程,使得数据更容易被理解
C
分类分析(Classification analysis) – 从数据中获得重要的相关性信息的系统化过程; 这类数据也被称为元数据(meta
data),是描述数据的数据
云计算(Cloud computing) – 构建在网络上的分布式计算系统,数据是存储于机房外的(即云端)
聚类分析(Clustering analysis) –
它是将相似的对象聚合在一起,每类相似的对象组合成一个聚类(也叫作簇)的过程。这种分析方法的目的在于分析数据间的差异和相似性
冷数据存储(Cold data storage) – 在低功耗服务器上存储那些几乎不被使用的旧数据。但这些数据检索起来将会很耗时
对比分析(Comparative analysis) – 在非常大的数据集中进行模式匹配时,进行一步步的对比和计算过程得到分析结果
复杂结构的数据(Complex structured data) –
由两个或多个复杂而相互关联部分组成的数据,这类数据不能简单地由结构化查询语言或工具(SQL)解析
计算机产生的数据(Computer generated data) – 如日志文件这类由计算机生成的数据
并发(Concurrency) – 同时执行多个任务或运行多个进程
相关性分析(Correlation analysis) – 是一种数据分析方法,用于分析变量之间是否存在正相关,或者负相关
客户关系管理(CRM: Customer Relationship Management) –
用于管理销售、业务过程的一种技术,大数据将影响公司的客户关系管理的策略
D
仪表板(Dashboard) – 使用算法分析数据,并将结果用图表方式显示于仪表板中
数据聚合工具(Data aggregation tools) – 将分散于众多数据源的数据转化成一个全新数据源的过程
数据分析师(Data analyst) – 从事数据分析、建模、清理、处理的专业人员
数据库(Database) – 一个以某种特定的技术来存储数据集合的仓库
数据库即服务(Database-as-a-Service) – 部署在云端的数据库,即用即付,例如亚马逊云服务(AWS: Amazon Web
Services)
数据库管理系统(DBMS: Database Management System) – 收集、存储数据,并提供数据的访问
数据中心(Data centre) – 一个实体地点,放置了用来存储数据的服务器
数据清洗(Data cleansing) – 对数据进行重新审查和校验的过程,目的在于删除重复信息、纠正存在的错误,并提供数据一致性
数据管理员(Data custodian) – 负责维护数据存储所需技术环境的专业技术人员
数据道德准则(Data ethical guidelines) – 这些准则有助于组织机构使其数据透明化,保证数据的简洁、安全及隐私
数据订阅(Data feed) – 一种数据流,例如Twitter订阅和RSS
数据集市(Data marketplace) – 进行数据集买卖的在线交易场所
数据挖掘(Data mining) – 从数据集中发掘特定模式或信息的过程
数据建模(Data modelling) – 使用数据建模技术来分析数据对象,以此洞悉数据的内在涵义
数据集(Data set) – 大量数据的集合
数据虚拟化(Data virtualization) –
数据整合的过程,以此获得更多的数据信息,这个过程通常会引入其他技术,例如数据库,应用程序,文件系统,网页技术,大数据技术等等
去身份识别(De-identification) – 也称为匿名化(anonymization),确保个人不会通过数据被识别
判别分析(Discriminant analysis) –
将数据分类;按不同的分类方式,可将数据分配到不同的群组,类别或者目录。是一种统计分析法,可以对数据中某些群组或集群的已知信息进行分析,并从中获取分类规则。
分布式文件系统(Distributed File System) – 提供简化的,高可用的方式来存储、分析、处理数据的系统
文件存贮数据库(Document Store Databases) – 又称为文档数据库(document-oriented database),
为存储、管理、恢复文档数据而专门设计的数据库,这类文档数据也称为半结构化数据
E
探索性分析(Exploratory analysis) –
在没有标准的流程或方法的情况下从数据中发掘模式。是一种发掘数据和数据集主要特性的一种方法
E字节(EB: Exabytes) – 约等于1000 PB(petabytes), 约等于1百万 GB。如今全球每天所制造的新信息量大约为1
EB
提取-转换-加载(ETL: Extract, Transform and Load) –
是一种用于数据库或者数据仓库的处理过程。即从各种不同的数据源提取(E)数据,并转换(T)成能满足业务需要的数据,最后将其加载(L)到数据库
F
故障切换(Failover) – 当系统中某个服务器发生故障时,能自动地将运行任务切换到另一个可用服务器或节点上
容错设计(Fault-tolerant design) – 一个支持容错设计的系统应该能够做到当某一部分出现故障也能继续运行
G
游戏化(Gamification) –
在其他非游戏领域中运用游戏的思维和机制,这种方法可以以一种十分友好的方式进行数据的创建和侦测,非常有效。
图形数据库(Graph Databases) –
运用图形结构(例如,一组有限的有序对,或者某种实体)来存储数据,这种图形存储结构包括边缘、属性和节点。它提供了相邻节点间的自由索引功能,也就是说,数据库中每个元素间都与其他相邻元素直接关联。
网格计算(Grid computing) – 将许多分布在不同地点的计算机连接在一起,用以处理某个特定问题,通常是通过云将计算机相连在一起。
H
Hadoop – 一个开源的分布式系统基础框架,可用于开发分布式程序,进行大数据的运算与存储。
Hadoop数据库(HBase) – 一个开源的、非关系型、分布式数据库,与Hadoop框架共同使用
HDFS – Hadoop分布式文件系统(Hadoop Distributed File
System);是一个被设计成适合运行在通用硬件(commodity hardware)上的分布式文件系统
高性能计算(HPC: High-Performance-Computing) – 使用超级计算机来解决极其复杂的计算问题
I
内存数据库(IMDB: In-memory) –
一种数据库管理系统,与普通数据库管理系统不同之处在于,它用主存来存储数据,而非硬盘。其特点在于能高速地进行数据的处理和存取。
物联网(Internet of Things) – 在普通的设备中装上传感器,使这些设备能够在任何时间任何地点与网络相连。
J
法律上的数据一致性(Juridical data compliance) –
当你使用的云计算解决方案,将你的数据存储于不同的国家或不同的大陆时,就会与这个概念扯上关系了。你需要留意这些存储在不同国家的数据是否符合当地的法律。
K
键值数据库(KeyValue Databases) –
数据的存储方式是使用一个特定的键,指向一个特定的数据记录,这种方式使得数据的查找更加方便快捷。键值数据库中所存的数据通常为编程语言中基本数据类型的数据。
L
延迟(Latency) – 表示系统时间的延迟
遗留系统(Legacy system) – 是一种旧的应用程序,或是旧的技术,或是旧的计算系统,现在已经不再支持了。
负载均衡(Load balancing) – 将工作量分配到多台电脑或服务器上,以获得最优结果和最大的系统利用率。
位置信息(Location data) – GPS信息,即地理位置信息。
日志文件(Log file) – 由计算机系统自动生成的文件,记录系统的运行过程。
M
M2M数据(Machine2Machine data) – 两台或多台机器间交流与传输的内容
机器数据(Machine data) – 由传感器或算法在机器上产生的数据
机器学习(Machine learning) –
人工智能的一部分,指的是机器能够从它们所完成的任务中进行自我学习,通过长期的累积实现自我改进。
MapReduce – 是处理大规模数据的一种软件框架(Map: 映射,Reduce: 归纳)。
大规模并行处理(MPP: Massively Parallel Processing) –
同时使用多个处理器(或多台计算机)处理同一个计算任务。
元数据(Metadata) – 被称为描述数据的数据,即描述数据数据属性(数据是什么)的信息。
MongoDB – 一种开源的非关系型数据库(NoSQL database)
多维数据库(Multi-Dimensional Databases) – 用于优化数据联机分析处理(OLAP)程序,优化数据仓库的一种数据库。
多值数据库(MultiValue Databases) – 是一种非关系型数据库(NoSQL),
一种特殊的多维数据库:能处理3个维度的数据。主要针对非常长的字符串,能够完美地处理HTML和XML中的字串。
N
自然语言处理(Natural Language Processing) –
是计算机科学的一个分支领域,它研究如何实现计算机与人类语言之间的交互。
网络分析(Network analysis) – 分析网络或图论中节点间的关系,即分析网络中节点间的连接和强度关系。
NewSQL – 一个优雅的、定义良好的数据库系统,比SQL更易学习和使用,比NoSQL更晚提出的新型数据库
NoSQL –
顾名思义,就是“不使用SQL”的数据库。这类数据库泛指传统关系型数据库以外的其他类型的数据库。这类数据库有更强的一致性,能处理超大规模和高并发的数据。
O
对象数据库(Object Databases) –
(也称为面象对象数据库)以对象的形式存储数据,用于面向对象编程。它不同于关系型数据库和图形数据库,大部分对象数据库都提供一种查询语言,允许使用声明式编程(declarative
programming)访问对象
基于对象图像分析(Object-based Image Analysis) –
数字图像分析方法是对每一个像素的数据进行分析,而基于对象的图像分析方法则只分析相关像素的数据,这些相关像素被称为对象或图像对象。
*** 作型数据库(Operational Databases) –
这类数据库可以完成一个组织机构的常规 *** 作,对商业运营非常重要,一般使用在线事务处理,允许用户访问 、收集、检索公司内部的具体信息。
优化分析(Optimization analysis) –
在产品设计周期依靠算法来实现的优化过程,在这一过程中,公司可以设计各种各样的产品并测试这些产品是否满足预设值。
本体论(Ontology) – 表示知识本体,用于定义一个领域中的概念集及概念之间的关系的一种哲学思想。(译者注:
数据被提高到哲学的高度,被赋予了世界本体的意义,成为一个独立的客观数据世界)
异常值检测(Outlier detection) –
异常值是指严重偏离一个数据集或一个数据组合总平均值的对象,该对象与数据集中的其他它相去甚远,因此,异常值的出现意味着系统发生问题,需要对此另加分析。
P
模式识别(Pattern Recognition) – 通过算法来识别数据中的模式,并对同一数据源中的新数据作出预测
P字节(PB: Petabytes) – 约等于1000 TB(terabytes), 约等于1百万 GB
(gigabytes)。欧洲核子研究中心(CERN)大型强子对撞机每秒产生的粒子个数就约为1 PB
平台即服务(PaaS: Platform-as-a-Service) – 为云计算解决方案提供所有必需的基础平台的一种服务
预测分析(Predictive analysis) –
大数据分析方法中最有价值的一种分析方法,这种方法有助于预测个人未来(近期)的行为,例如某人很可能会买某些商品,可能会访问某些网站,做某些事情或者产生某种行为。通过使用各种不同的数据集,例如历史数据,事务数据,社交数据,或者客户的个人信息数据,来识别风险和机遇
隐私(Privacy) – 把具有可识别出个人信息的数据与其他数据分离开,以确保用户隐私。
公共数据(Public data) – 由公共基金创建的公共信息或公共数据集。
Q
数字化自我(Quantified Self) – 使用应用程序跟踪用户一天的一举一动,从而更好地理解其相关的行为
查询(Query) – 查找某个问题答案的相关信息
R
再识别(Re-identification) – 将多个数据集合并在一起,从匿名化的数据中识别出个人信息
回归分析(Regression analysis) –
确定两个变量间的依赖关系。这种方法假设两个变量之间存在单向的因果关系(译者注:自变量,因变量,二者不可互换)
RFID – 射频识别; 这种识别技术使用一种无线非接触式射频电磁场传感器来传输数据
实时数据(Real-time data) – 指在几毫秒内被创建、处理、存储、分析并显示的数据
推荐引擎(Recommendation engine) – 推荐引擎算法根据用户之前的购买行为或其他购买行为向用户推荐某种产品
路径分析(Routing analysis) –
针对某种运输方法通过使用多种不同的变量分析从而找到一条最优路径,以达到降低燃料费用,提高效率的目的
S
半结构化数据(Semi-structured data) –
半结构化数据并不具有结构化数据严格的存储结构,但它可以使用标签或其他形式的标记方式以保证数据的层次结构
情感分析(Sentiment Analysis) – 通过算法分析出人们是如何看待某些话题
信号分析(Signal analysis) – 指通过度量随时间或空间变化的物理量来分析产品的性能。特别是使用传感器数据。
相似性搜索(Similarity searches) – 在数据库中查询最相似的对象,这里所说的数据对象可以是任意类型的数据
仿真分析(Simulation analysis) –
仿真是指模拟真实环境中进程或系统的 *** 作。仿真分析可以在仿真时考虑多种不同的变量,确保产品性能达到最优
智能网格(Smart grid) – 是指在能源网中使用传感器实时监控其运行状态,有助于提高效率
软件即服务(SaaS: Software-as-a-Service) – 基于Web的通过浏览器使用的一种应用软件
空间分析(Spatial analysis) – 空间分析法分析地理信息或拓扑信息这类空间数据,从中得出分布在地理空间中的数据的模式和规律
SQL – 在关系型数据库中,用于检索数据的一种编程语言
结构化数据(Structured data)
-可以组织成行列结构,可识别的数据。这类数据通常是一条记录,或者一个文件,或者是被正确标记过的数据中的某一个字段,并且可以被精确地定位到。
T
T字节(TB: Terabytes) – 约等于1000 GB(gigabytes)。1 TB容量可以存储约300小时的高清视频。
时序分析(Time series analysis) –
分析在重复测量时间里获得的定义良好的数据。分析的数据必须是良好定义的,并且要取自相同时间间隔的连续时间点。
拓扑数据分析(Topological Data Analysis) –
拓扑数据分析主要关注三点:复合数据模型、集群的识别、以及数据的统计学意义。
交易数据(Transactional data) – 随时间变化的动态数据
透明性(Transparency) – 消费者想要知道他们的数据有什么作用、被作何处理,而组织机构则把这些信息都透明化了。
U
非结构化数据(Un-structured data) – 非结构化数据一般被认为是大量纯文本数据,其中还可能包含日期,数字和实例。
V
价值(Value) – (译者注:大数据4V特点之一)
所有可用的数据,能为组织机构、社会、消费者创造出巨大的价值。这意味着各大企业及整个产业都将从大数据中获益。
可变性(Variability) – 也就是说,数据的含义总是在(快速)变化的。例如,一个词在相同的推文中可以有完全不同的意思。
多样(Variety) – (译者注:大数据4V特点之一)
数据总是以各种不同的形式呈现,如结构化数据,半结构化数据,非结构化数据,甚至还有复杂结构化数据
高速(Velocity) – (译者注:大数据4V特点之一) 在大数据时代,数据的创建、存储、分析、虚拟化都要求被高速处理。
真实性(Veracity) – 组织机构需要确保数据的真实性,才能保证数据分析的正确性。因此,真实性(Veracity)是指数据的正确性。
可视化(Visualization) –
只有正确的可视化,原始数据才可被投入使用。这里的“可视化”并非普通的图型或饼图,可视化指是的复杂的图表,图表中包含大量的数据信息,但可以被很容易地理解和阅读。
大量(Volume) – (译者注:大数据4V特点之一) 指数据量,范围从Megabytes至Brontobytes
W
天气数据(Weather data) – 是一种重要的开放公共数据来源,如果与其他数据来源合成在一起,可以为相关组织机构提供深入分析的依据
X
XML数据库(XML Databases) –
XML数据库是一种以XML格式存储数据的数据库。XML数据库通常与面向文档型数据库相关联,开发人员可以对XML数据库的数据进行查询,导出以及按指定的格式序列化
Y
Y字节 (Yottabytes) – 约等于1000 ZB (Zettabytes),
约等于250万亿张DVD的数据容量。现今,整个数字化宇宙的数据量为1 YB, 并且将每18年翻一番。
Z
Z字节 (ZB: Zettabytes) – 约等于1000 EB (Exabytes), 约等于1百万
TB。据预测,到2016年全球范围内每天网络上通过的信息大约能达到1 ZB。
附:存储容量单位换算表:
1 Bit(比特) = Binary Digit
8 Bits = 1 Byte(字节)
1,000 Bytes = 1 Kilobyte
1,000 Kilobytes = 1 Megabyte
1,000 Megabytes = 1 Gigabyte
1,000 Gigabytes = 1 Terabyte
1,000 Terabytes = 1 Petabyte
1,000 Petabytes = 1 Exabyte
1,000 Exabytes = 1 Zettabyte
1,000 Zettabytes = 1 Yottabyte
1,000 Yottabytes = 1 Brontobyte
1,000 Brontobytes = 1 Geopbyte

物联网是通过射频识别、红外感应器、全球定位系统、激光扫描器等信息传感设备,按约定的协议将物品与互联网相连进行信息交换和通信,以实现智能化识别、定位、跟踪、监控和管理的一种网络。
BIM与物联网集成应用,实质上是建筑全过程信息的集成与融合。BIM技术发挥上层信息集成、交互、展示和管理的作用,而物联网技术则承担底层信息感知、采集、传递、监控的功能。二者集成应用可以实现建筑全过程“信息流闭环”,实现虚拟信息化管理与实体环境硬件之间的有机融合。目前BIM在设计阶段应用较多,并开始向建造和运维阶段应用延伸。物联网应用目前主要集中在建造和运维阶段,二者集成应用将会产生极大的价值。
BIM与物联网的深度融合与应用,势必将智能建造大大提升到智慧建造的新高度,开创智慧建筑新时代,是未来建设行业信息化发展的重要方向之一。未来建筑智能化系统,将会出现以物联网为核心,以功能分类、相互通信兼容为主要特点的建筑“智慧化”大控制系统。
圭土云有十分丰富的BIM+物联网项目案例,题主可以登录>

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/13318019.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-07-13
下一篇 2023-07-13

发表评论

登录后才能评论

评论列表(0条)

保存