910指玄铁910。
玄铁910是平头哥发布的基于RISC-V的处理器IP核,开发者可以免费下载FPGA代码,开展芯片原型设计架构创新;2019年7月25日,平头哥首个产品玄铁910正式发布。
参数特点:
玄铁910支持16核,主频为25GHz。有两个技术创新提高了玄铁910的性能,分别是3发射8执行的复杂乱序执行架构,可实现每周期2条内存访问处理器,以及扩展了50多条指令,增强计算、存储和多核等方面性能。阿里巴巴方面称,玄铁910性能较业界主流提升了约40%。
平头哥披露RISC-V的产品将覆盖物联网、单片机、人工智能、固态硬盘、工业控制、5G等应用场景。在建立的端到云生态系统中,平头哥将负责端到云的基础设施和算法能力,而客户将负责场景定义和应用程序算法,从而使客户能够高效率地提供有竞争力的产品。平头哥将覆盖语音芯片平台、视觉芯片平台、无线连接芯片、微控制芯片平台。
深圳特区成立40周年之际,首届慕尼黑华南电子展在深圳国际会展中心举办。期间芯师爷专访了全球电子产业链的近20家领先企业、潜力企业的领袖及高管,特别推出“慕名而来·圳好”专题报道,与众多业内人士共同探讨全球电子产业趋势、中国半导体发展和技术创新等热点焦点话题。
本文为芯师爷专访极海半导体资深产品总监王超实录。王超,极海半导体资深产品总监,拥有近20年芯片原厂市场及产品规划经验,曾在ST(意法半导体)、NXP(恩智浦)等企业MCU部门长期任职。
珠海极海半导体有限公司(以下简称:极海半导体) ,是艾派克微电子旗下全资子公司。极海半导体具有20年的集成电路芯片设计经验,现产品涵盖32位工业级通用MCU,低功耗蓝牙芯片以及工业物联网SoC-eSE大安全芯片产品与方案。
采访实录
1、您对慕尼黑华南电子展的初印象是什么?
极海半导体资深产品总监王超:
慕尼黑华南电子展在深圳虽是首次开展,但其实在电子行业内闻名已久,慕尼黑电子展在行业内的影响力以及展会策划能力是值得信赖的。所以这一次就先祝本次电子展完圆满成功。
2、本次参展极海半导体带来了哪些新的产品展示?请介绍下它们的性能特色、主要优势等。
极海半导体资深产品总监王超:
关于新产品, 极海这次带来了两个系列产品,一是通用32位MCU系列;二是针对于高端工业物联网领域的大川GS系列
32位通用MCU系列中,极海推出了工业级扩展型APM32F072xB和工业级增强型APM32F051x8系列MCU新品。
这两款MCU采用全新的制造工艺,新增电容触摸功能和HDM CEC接口,可精准识别触控输入指令,满足高级控制应用需求,实现了比市场主流竞品低50%的超低运行功耗、高1倍以上的Flash擦写速度。
另外我们今年还推出了5款针对高端工业物联网领域的大川GS系列SoC-eSE大安全芯片。这个系列产品全系列产品都是基于国产平头哥玄铁CPU,支持双核、4核到7核的多核异构架构,符合国密二级标准,并采用国内领先水平的嵌入式eSE安全单元技术,具备全方位一体的安全防护能力,相比市面上较多的独立安全芯片方案,大川eSE单芯片SoC方案具有更高集成性、更低功耗和更高安全性。
3、极海半导体成立的契机是什么?目前极海半导体的产品布局是怎样的?
极海半导体资深产品总监王超:
极海半导体前身是艾派克微电子2015年成立的物联网芯片事业部,经过了4年的内部孵化,为顺应物联网的行业的蓬勃发展,于2019年12月正式成立为独立运营公司。
其实当公司业务做大,需要扩增规模进入下一个领域的时候,大多都会采用这种矩阵形式来经营管理,成立独立公司有助于子公司的业务灵活运营,便于激励和业绩考核。
目前母公司艾派克更聚焦于打印机及打印机周边芯片开发,极海的主营业务主要在打印行业以外,现 产品涵盖32位工业级通用MCU,低功耗蓝牙芯片以及工业物联网SoC-eSE大安全芯片产品与方案。
4、截止当前,极海半导体的MCU系列产品在技术和市场上有何新发展?
极海半导体资深产品总监王超:
在市场方面,极海 APM32系列MCU自2019年量产发布以来,已广泛应用于消费电子、智能家居以及医疗设备领域。且极海已经通过IEC61508认证拓展至工业领域, 与国内工业智能制造的标杆企业建立了密切合作 ,为工控核心设备提供高安全、高可靠性国产MCU产品方案。目前极海已经在定义和设计M4和M7内核的中高端MCU。未来,极海还将布局高价值、高门槛的车规MCU市场,实现MCU领域的全行业覆盖。
从技术上来说,极海的产品有以下几个优势:
1)稳定可靠 :全系列产品工作温度覆盖-40 ~+105 ,ESD等级高达8KV,抗干扰性强,可满足严苛工作环境需求。
2)可移植性好 :有助于客户降低芯片替代成本,缩短产品开发时间,加速产品上市。
3)安全性高: 已通过中国IEC61508和USB-IF认证,并支持工业级MCU+安全芯片产品组合,符合工业和车用高可靠性标准,目前正在申请德国相关认证。
4)定制能力强 :基于极海多年的产品开发经验,极海能满足客户多种内核、多种架构的SOC的定制需求。
5、近两年国产MCU发展得比较快,市场出货量不断攀升,您如何看待现在的国产MCU市场?
极海半导体资深产品总监王超:
目前5G新基建、人工智能以及物联网万亿级市场的持续发展,为国产MCU带来了广阔的市场空间。另外,中美贸易战也催化了芯片国产替代进程,在内外因素的双重影响下,国产MCU迎来了新一波快速发展的机遇。
但值得注意的是,国产MCU虽然在加速发展,但目前来说主要集中在中低端应用领域,高端市场仍被国外厂商占据主导地位。
6、在未来的规划中,极海半导体的MCU将在哪些方面加强产品优势,增强市场竞争力?
极海半导体资深产品总监王超:
从极海来说,未来一方面将加大MCU芯片研发投入和技术创新力度,为客户提供更低功耗、高更性能、更高稳定性和性价比的产品。极海将在2021年年底推出基于M4内核的中高端产品,基于M7内核的芯片也在积极筹备中,意向客户们也可以找极海多交流。
另外, 针对高端工控领域,我们将推出工业级 MCU+安全 芯片的产品组合策略;针对消费电子领域,我们将提供基于 MCU+蓝牙、MCU+传感器、MCU+WIFI、MCU+认证 等方案,为市场提供更多面向不同场景的定制化方案。
7、 极海半导体的大川系列是安全芯片,您认为芯片设计该从哪些方面保障物联网的安全?
极海半导体资深产品总监王超:
极海大川GS系列安全芯片设计是从以下3个方面去保障物联网的安全性:
一是芯片的安全化+可靠容错设计 :通过构建可信执行环境和可定制化的硬件机制,保障物联网安全资源的机密性和完整性。
二是采用高集成度的eSE嵌入式芯片设计 :以安全子系统是作为单芯片内嵌模块,可实现多位一体的安全防护,这样能有效保障芯片器件自身安全以及物联网数据信息安全。
三是多核异构芯片设计 :采用全国产平头哥玄铁CPU,可提供双核、4核至7核的灵活混编CPU内核设计,具备“业务应用加速与安全防护”双重优势,支持物联网特定领域的专用IP定制。
8、现在市场如何看待物联网的安全问题?
极海半导体资深产品总监王超:
随着物联网万亿级市场的持续发展,像用户的数据被窃取,终端的设备遭到非法地 *** 控等安全威胁也越来越多地暴露出来。这样一来保障物联网数据传输、设备连接过程中的信息安全,对于稳定有序的互联时代的发展至关重要。
尤其是国际贸易争端加剧,现在 越来越多的国内企业开始关注和重视物联网安全问题,并且急切 的 寻求安全的国产芯片替代方案。 所以极海除了刚才提到的大川GS系列安全芯片,未来还将不断推出专注于物联网安全的产品和方案。
9、您对明年慕展有什么期望?是否会继续参会?
2021年我们会继续支持慕尼黑华南电子展。同时也期待我们在展会上能不断提升品牌知名度,收获更多优质客户。
数字芯片是半导体行业里市场空间最大,技术壁垒最高的赛道。之前我们分析过的那些尖端设备和材料,主要都是为数字芯片打造的。
目前芯片设计这些赛道里,IGBT和模拟芯片领域都有IDM厂商,但数字芯片很少有做全产业链的,大家专注于自己的环节,分工合作。
这是因为IGBT和模拟芯片虽然技术和资金壁垒也很高,但生命周期长。数字芯片的发展却遵循摩尔定律,不但研发需要大量资金,晶圆代工需要大量资本购买设备,迭代又非常快。
等你把这一代产品全都配置好了,人家下一代产品又出来了,还得接着追,这就是数字芯片最难的地方。
数字芯片的工作原理简单来说就是通过晶体管控制电流的“开”和“关”,来表达数据信息的“1”和“0”,或者逻辑判断的“是”与“非”,所以数字电路也称开关电路或逻辑电路。
其组成主要就是工作在开关状态的晶体管,所以数字芯片的规模大小由其中的晶体管数量决定,摩尔定律说的也是每隔18个月晶体管数量增加一倍,因此晶体管数量对数字芯片性能起决定性作用。
数字芯片包含七种类别,分别是逻辑电路、通用处理器、存储器、单片系统SoC、微控制器MCU、定制电路ASIC和可编程逻辑器件。将来我们会对其中主要类别进行逐个分析。
简单的逻辑电路通常由门电路构成,基本是由与门、或门和非门电路排列组合而成,这些系列的电路也称为组合逻辑电路。
数量庞大的逻辑电路芯片经过不同的排列组合,理论上可以处理非常复杂的控制和运算问题。
但当下的芯片集成度很高,许多自成系统的逻辑电路可以集成在芯片内部,一个芯片就可以实现复杂的功能,也就没人愿意用大量小芯片去实现一个大系统。
所以目前逻辑电路芯片仅用于小型电子产品中,以及在大系统的通用大芯片之间的连接电路上。
通用处理器一般指服务器用和桌面计算用的CPU芯片,也包括GPU、DSP、APU等。
它是规模最大、结构最复杂的一类数字电路芯片,由海量逻辑电路组成,包含了控制、存储、运算、输入输出等完整的数据和信息处理系统,这次我们先分析CPU这一细分领域。
01 什么是CPU
CPU也叫中央处理器,是计算机的运算和控制中心,主要功能是完成计算机指令的执行和数据处理,因此CPU与内部存储器、输入输出设备被认为是计算机三大核心部件。
控制单元是CPU的控制中心,当下达指令时,控制单元负责将存储器中的数据发送至运算单元并将运算后的结果存回存储器中。
运算单元负责执行控制单元的命令,进行算术运算和逻辑运算。
存储单元是CPU中数据暂时存储的位置,其中寄存有待处理或者处理完的数据。寄存器相比内存可以减少CPU访问数据的时间,也可以减少CPU访问内存的次数,有助于提高CPU的工作速度。
按照处理信息的字长,CPU可分为四位微处理器、八位微处理器、十六位微处理器、三十二位微处理器以及六十四位微处理器等,后续还在不断拓展。
CPU作为集成电路的一部分,现在全球集成电路市场受益于5G、可穿戴设备和云服务等应用领域发展,依旧在稳步增长。
中国是全球最大的集成电路市场,增速也是全球最快,2012-2020年九年间集成电路产业市场规模复合增长率达到1681%。
集成电路进出口市场上,我国存在较大逆差,而且逆差还在拉大,国产化替代空间广阔。
CPU的下游市场涵盖服务器、桌面端、移动 PC端、智能手机以及物联网、人工智能、 汽车 电子、智能穿戴等新兴应用领域。
目前桌面端和移动PC端发展平缓,服务器受益于云化趋势增速较快,智能手机受益于5G换机潮迎来一波周期性机会,行业中长期发展还得看那些新兴领域,但新兴领域并不完全是CPU的增量市场,比如新能源 汽车 。
目前全球新能源 汽车 销量持续增长, 汽车 三化(电动化、智能化、共享化)势不可挡,电子成本占总成本的比率逐步提升,发展空间很大,2021年全球 汽车 芯片市场规模预计可达到440亿美元。
按应用场景划分,车用计算芯片可以划分为智能座舱芯片和自动驾驶芯片、车身控制芯片。
由于单纯一个的CPU已经无法满足智能 汽车 的算力要求,将CPU与GPU、FPGA、ASIC等通用或专用芯片异构融合的SoC方案成了各大AI芯片厂商算力竞争的主赛道。
不仅智能 汽车 ,在物联网和人工智能等领域,传统CPU也出现了不能适应市场要求的情况。
随着物联网设备灵活性要求日益提高,芯片向低功耗、高性能方向发展,MCU和SoC脱颖而出。
人工智能常用的AI芯片通常是针对人工智能算法做了特定加速设计的芯片,如GPU、FPGA、ASIC和神经拟态芯片。
虽然深度学习算法上CPU不如AI芯片,但做大规模推理,CPU比较有优势,再加上CPU优势领域的市场空间广阔,应用场景丰富,国内 科技 企业持续研发国产CPU依然势在必行。
目前CPU主要市场份额仍在海外企业手中。随着国内技术进步,国内CPU也在变得更好用,再加上政策持续加码,国产替代确定性较高。
02 CPU芯片架构
芯片架构也叫指令集架构,简单来说就是芯片的执行流程,不同指令集架构的芯片就是执行步骤的不同。
目前CPU指令集架构主要分为复杂指令集(CISC)和精简指令集(RISC)两大类。
复杂指令集支持的指令更多,每种运算都有自己的完整指令。由于只有少部分指令会反复使用,精简指令集就是对其进行精简,不用每种运算都有完整指令。
复杂指令集更适用于运算复杂的电脑CPU,精简指令集更适用于运算要求较低,功耗也较低的手机CPU。
在这两种指令集基础上又产生了不同的架构,也就是在指令集基础上实现对CPU内的控制单元、运算单元、存储单元等部件的一系列完整设计和安排。
03 X86架构
CISC的架构主要就是X86架构,目前Intel和AMD两家独大。
Intel和Windows组成了“Wintel”联盟,击败了苹果、IBM、摩托罗拉的Power联盟,垄断桌面市场长达20多年。直到目前,服务器、桌面和移动PC主要使用的还是X86架构处理器,Intel依然占据大部分市场。
后来随着AMD第二代Epyc处理器“罗马”问世,AMD服务器CPU市占率在短短两年内从1%增长到了8%。接着第三代Epyc处理器“米兰”发布,其服务器市场份额有望达到15%。
由于AMD服务器芯片性价比较高,又有台积电7nm制程技术加成,越来越多数据中心开始采购AMD的产品。
X86架构之所以覆盖范围这么广,除了起步早、性能高、兼容性好之外,还跟它生态完善有关,目前全球65%以上的软件开发商都为X86提供服务,你想自己设计一个架构,没有生态也就没有人使用。
现在X86架构在中国市场依然广阔,尤其是在服务器领域具有绝对优势,几乎占据全部服务器销量。其他非X86架构的服务器占比很小,主要都是ARM架构。
除了Intel和AMD双寡头以外,国内还有兆芯、海光和MPRC几家X86芯片商。目前X86架构的国产化替代还不太明显,兆芯2019年市占率仅01%。
04 ARM架构
RISC的架构有ARM、MIPS、Power PC、Alpha、RISC–V等。
如今超过90%的智能手机采用ARM架构,MIPS在嵌入式设备中应用广泛,而且随着性能提升,技术层面的融合,RISC架构也在不断向X86的应用领域渗透。
ARM架构由于具有成本低、功耗低、体积小、性能高等特点,非常适用移动通讯领域,在智能手机、调制解调器、车载信息设备、可穿戴设备等领域都占据绝对统治地位。
目前ARM架构是非X86架构中应用最广泛,发展最成熟的架构,市占率达到了432%。
ARM完整产品线包括微控制器、微处理器、圆形处理器、实现软件、单元库、嵌入式内存、高速连接产品、外设以及开发工具。
目前国内外主要ARM厂商有ARM、联发科、高通Qualcomm、苹果、三星电子,飞腾、华为鲲鹏、展讯SPREAD TRUM。
世界各大半导体生产商从ARM公司购买其设计的ARM微处理器核,根据各自不同的应用领域,加入适当的外围电路,从而形成自己的ARM微处理器芯片进入市场。
联发科是世界上最大的ARM手机芯片供应商,苹果、三星、高通等行业巨头均在最近几年使用ARM架构,逐步实现基于ARM的全生态链。
截至2021Q1,联发科和高通是最主要的手机CPU供应商,市场份额分别为35%和29%,同比分别增长11%和-2%。
苹果市占率为17%,三星降至9%,华为海思由于受到美国升级制裁的影响,市场份额快速下滑,降至5%。
服务器方面,非X86目前参与者包括华为、飞腾、高通、亚马逊等。
华为鲲鹏服务器是ARM服务器的重要参与者,据华为称,鲲鹏出货量已占据市场50%,未来有望发挥其在移动市场的优势,借力云端协同,抢占服务器市场更多份额。
在桌面PC市场,ARM正逐渐被更多企业应用,2011年微软开始采用ARM的Windows系统,ARM开始进入X86的传统优势领域,如今苹果MacOS、新版Windows等均采用了ARM架构。
此外,ARM在物联网、 汽车 等领域均有很大发展潜质。ARM在公共事业、智慧城市、资产管理等领域均提供了解决方案。
05 MIPS等架构
MIPS、Alpha、Power等架构已经不是市场主流应用,但在特定领域内仍在被使用。
MIPS架构是一种简洁、优化、具有高度扩展性的RISC架构,能够提供最高的每平方毫米性能和当今SoC设计中最低的能耗,已经在移动和嵌入式工业领域销售了近三十年,目前市占率9%。
MIPS多线程CPU已经广泛应用于不同领域,以及许多移动设备的LTE调制解调器中。
国内外主要MIPS芯片商主要有MIPS公司、Ikanos、龙芯中科、北京君正。不过MIPS公司两度易主后,新公司已经转向RISC-V。
龙芯和申威分别获得MIPS及Alpha永久授权发展自主指令集,我国企业成为了该架构应用产品研发和全球生态构建的单一力量,应用的也都是国家非常注重安全的领域。
Power架构在相关市场的占有率也不过1%左右,但在高性能计算领域一直拥有相当重要的地位,其一些技术特性甚至可与Intel一较高下,然而市场参与者基本只有IBM。
06 RISC-V架构
RISC–V是目前业内最被看好,最有机会弯道超车的新架构,具有完全开源、架构简单、易于移植,适用于各种设备、完整工具链, 运行效率高等特点。
这种架构目前接受度逐渐提高,有望成为继X86和ARM架构之后第三大主流指令集架构。
由于RISC-V基金会为非盈利会员制组织,所以RISC-V本身是免费的,自 RISC-V 基金会于 2015 年成立以来,RISC-V 生态系统经历了爆炸式增长,2020年成员增长率达到133%。
物联网的兴起为上游产业链提供新的成长潜力,由于RISC-V具备开源等特性,与物联网更灵活和多样的要求相吻合。
而且自中美贸易战以来,中国企业存在受制于美国不能升级架构的风险,随着RISC-V逐渐被接受,为我国芯片厂商通过RISC-V架构实现独立自主提供可行性。
Semico Research 预测,到 2025 年,市场将消耗 624 亿个 RISC-V CPU 内核,2018-2025 年复合年增长率为 1462%。其中工业领域将以使用超过167亿个内核遥遥领先。
市场研究公司Tractica也预测,RISC- V的IP和软件工具市场在2018年为5200万美元,到2025年时将增长至 11亿美元。
目前RISC-V发展时间较短,尚未一家独大,相关生态还在发展。
短期内ARM架构依然会占据中高端市场,RISC-V主要在一些碎片化的新兴市场展开应用,如物联网的轻终端场景。
这些场景需要低功耗低成本,但是往往程序不用大改、对软件生态的依赖性不高、出货量又很大,符合RISC-V阶段性的发展目标。
RISC-V允许任何厂商设计、制造和销售RISC-V芯片和软件,因此吸引了大批 科技 公司入场。
GreenWaves、IBM、NXP、西部数据、英伟达、高通、三星、谷歌、华为、晶心 科技 、芯源股份、芯来 科技 、阿里平头哥、中天微、Red Hat 与特斯拉等100 多家 科技 公司加入其阵营。
07 国产CPU自主可控程度
国产CPU经历了将近20年的发展,也产生了一批有实力的企业,如前面提到的中科龙芯、天津飞腾、海光信息、上海申威、上海兆芯等。
这其中申威和龙芯自主可控程度最高。上海申威主要从事Alpha架构的研发,它是目前创新可信度最高的国产CPU厂商,基本实现完全自主可控,主供党政办公、军方和超算领域。
其次是飞腾和华为鲲鹏(海思)为代表的ARM架构国产厂商。ARM架构需要有ARM公司授权,主要有三种授权等级:使用层级授权、内核层级授权和架构/指令集层级授权。
其中指令集层级授权等级最高,企业可以对ARM指令集进行改造以实现自行设计处理器,目前海思、飞腾已经获得ARMV8永久授权。
如果他们基于V8授权发展出自己的指令集,其创新可信程度将显著提升,即使未来拿不到V9V10等新架构授权,依然可以维持先进性。
最后是海光和兆芯为代表的X86厂商,仅获得内核层级的授权,未来扩充指令集形成自主可控指令集难度较大。
含光一出,不服来干!
阿里将芯片命名为平头哥,一种生活在非洲的蜜罐,号称全球胆子最肥的动物。其性格“不服就干”也成了阿里芯片的代名词。
含光是我国传说中上古三大神剑之一,该剑含而不露,光而不耀,光听名字就能想象到此剑强劲的威力。而含光就是平头哥旗下的小弟,将来还会有更多芯片产品。含光800的出现,真正体现了平头哥的特色:短、平、快。再加上上古神剑,天下无敌,听这名字就相当的霸气。
随着5G时代的到来,、视频等占用空间较大的信息文件会越来越多,与日俱增的海量数据需要更加强大的芯片处理才能完成。阿里对芯片的渴求比谁都更积极,所以必须研制出最牛最强的芯片才能给阿里目前的情况带来改变,这是战略性芯片。我们来看看含光800的专业数据:
含光800的12纳米技术,超过170万晶体管,超强的推理性能可以达到78563 IPS,比当今世界最厉害的AI芯片性能高4倍;芯片能效比500 IPS/W,是第二名的33倍,芯片用于云端影像处理,每秒可处理78万张。想象一下天猫淘宝的数据量,那可是天量而且每天都在增加。1颗含光800的算力相当于10颗GPU,未来5G时代智能物联网发展,就需要如此强劲的动力芯片。
含光800的面世,将会带来我国芯片发展的新的历史阶段。
一、区别于传统通用芯片,目标更明确专一
阿里的芯片和传统通用处理器(如X86、CPU和GPU)的算法还是有些不同,属于特定场景下的特定算法,我们可以理解为:定制化芯片。含光800目标专一、把硬件和软件发挥最大价值,就像平头哥一样,瞄准目标不服就干,干到你害怕为止。
二、依靠强大的基础,芯片研发速度更快
阿里五大支持机构—ABCDE,即Algorithm 算法机构、Big Data 大数据机构、Computing 安稳的计算力机构、Domain knowledge 专业领域知识机构、以及Ecosystem 大生态机构。拥有ABCDE的阿里,研发速度更快。
如果使用传统GPU,实时处理一个城市交通视频所需GPU数量大约需要40颗,出现的延时为300ms;如果使用阿里的含光800,只用4颗就能搞定,而且延时会下降到150ms。
阿里电商系统商品库每天的增加量达到10亿张,传统的GPU技术,识别效率低,需要1个小时。含光800,只用5分钟,效率可以提升12倍。
未来的5G物联网时代,含光800超强的计算能力还可应用于智慧医疗、汽车自动驾驶技术、智慧城市等行业。
三、为企业输出普惠算力,好东西让更多企业使用。
阿里产品铁三角:AI+芯片+云计算,从技术和硬件都没有问题,阿里是服务企业起家的,未来这些应用的目标还是广大企业用户。依靠阿里巴巴“让天下没有难做生意”的愿景,将会打造全新的商业模式——平头哥模式,为企业提供性价比更高的普惠算力,让更多企业都能享受科技带来的价值。
阿里巴巴发布玄铁910自研芯片!
其实,玄铁910处理器在2019年已经面世。并且已经用于物联网终端设备。
此次,阿里旗下平头哥半导体公布,安卓10系统可以在玄铁910上面进行移植。 简单理解就是,玄铁910兼容安卓系统。
1、玄铁910基于RISC-V开源架构开发。这与ARM需要购买授权不同;
2、玄铁910是自主的处理器ip内核。是基于RISC-V架构的拥有自主权的处理器;
3、平头哥完对安卓10与RISC-V的移植相关代码全部开源。硬件开源有利于物联网多元化的发展,避免难适应多场景和定制化的需求。(这是假设玄铁910全部开源。之前,是授权ip形式。)
这个目前肯定不行。除去其他因素,硬件生态和软件生态是决定玄铁是否能存活的关键。
其中,硬件生态包含RISC-V架构的底层技术生态和终端硬件生态。
而这一切,目前都不行!
ARM是潜在的威胁,并且授权费用贵。因此,RISC-V的开源,得到了许多企业的支持。其中,中国企业表现最为积极。为推行RISC-V的生态非常有意义。
如果有一天ARM不给我们用了,基于开源的RISC-V和开源的安卓依然可以正常使用。严格上讲是有了一个可行性的解决方案。
系统支持硬件这是理所当然。只是玄铁还太弱罢了。加上目前鸿蒙和玄铁的生态都不成熟,这就不是支持不支持的问题了,更多是好不好用的问题。
这就像龙芯之前,也做得不错。但是只能在特定的领域使用,不能面对大众的消费领域。
因此,性能、生态才是关键,而不是支持与否的问题。
阿里“玄铁+AliOS”可以上升至手机业务。之前,阿里玄铁和AliOS系统一直活跃在物联网终端,如果升级到手机业务,那么就可以与华为的“麒麟+ARM”组合形成竞争关系。这背后的意义就不简单了!
至于阿里会不会这么做,就看阿里的野心怎样。阿里即使要走这条路,其中的困难只会比华为多。
如今阿里只是实现了一个应用系统的适配而已。
硬件生态和软件生态缺一不可!阿里能不能在“玄铁+AliOS”模式下走得更远,只能用时间来解析。
玄铁可安装安卓系统,某种程度上讲,也是在解决生态问题。
中国网/中国发展门户网讯RISC-V,即第五代精简指令集,是一种基于精简指令集计算机(RISC)原理的开源指令集架构(ISA),由美国加州大学伯克利分校研究团队于 2010 年设计。相对于 X86 指令集的完全封闭及 ARM 指令集高昂的授权使用费,RISC-V 指令集通过支持自由开放的指令集体系架构及架构扩展以提供软件和硬件自由。RISC-V 的主要优点为完全开源、架构简单、易于移植、模块化设计,以及具有完整的工具链。处理器芯片是中国半导体产业的软肋,是中国半导体产业面临的“卡脖子”问题。近年来,国内芯片领域学术界和产业界都在积极 探索 实践,力求突破。中国在芯片研发领域的 4 个技术关卡分别为光刻机、电子设计自动化(EDA)软件、晶圆和指令集。由此可见,开源 RISC-V 指令集架构对我国在芯片指令集方面技术破围意义重大。我国有望通过 RISC-V 摆脱国外的指令集垄断,打破技术封锁。
RISC-V 自诞生以来取得了突飞猛进的发展,随着物联网、5G 通信、人工智能等技术的兴起,物联网和嵌入式设备成为 RISC-V 最先落地的领域和最大的应用市场。各国研究机构及企业纷纷加入研究和开发行列,RISC-V 不仅打破了现有指令集架构环境下英国 ARM 公司和美国Intel公司的两强垄断格局,而且建立了一个开放的生态及框架来推动全球合作和创新。
主要国家战略举措及特点
美国强调 RISC-V 指令集在智能装备芯片领域的战略应用。2017 年 6 月,美国国防高级研究计划局(DARPA)启动“电子复兴计划”(Electronics Resurgence Initiative),该计划旨在解决半导体制程瓶颈以应对半导体产业快速发展的挑战。“电子复兴计划”连续多年对 RISC-V 指令集的研究和产业化应用给予专项支持。其中,实现更快速集成电路项目、Posh 开源硬件项目和电子资产的智能设计项目明确指明需要基于 RISC-V 指令集进行开发。2021 年 3 月,SciFive 公司与 DARPA 达成开放许可协议授权,SciFive 加入“DARPA 工具箱计划”(DARPA Toolbox Initiative)为 DARPA 项目参与者提供基于 RISC-V 的32 位和 64 位内核访问,以支持 DARPA 项目中应用程序和嵌入式应用的研发。
欧盟注重 RISC-V 与高性能计算的结合。2018 年 12 月,欧盟推出“欧洲处理器计划”(European Processor Initiative),拟开发面向欧洲市场的自主可控低功耗微处理器,降低欧洲超级计算行业对外国 科技 公司的依赖。其中,“欧洲处理器加速”(European Processor Accelerator)项目作为该计划的重要组成部分,其核心是采用免费和开源的 RISC-V 指令集架构,用于在欧洲境内开发和生产高性能芯片。2021 年 9 月,该项目的最新成果是交付了 143 个欧洲处理器加速芯片样本,这些加速芯片专为高性能计算(HPC)应用程序设计。此外,2021 年 1 月开始的 Euro HPC eProcessor 项目旨在基于 RISC-V 指令集体系架构构建一个完全开源的欧洲全堆栈生态系统以适用于 HPC 和嵌入式应用。
印度将 RISC-V 指令集定位为国家事实指令集。2011 年,印度开始实施处理器战略计划,每年资助 2—3 个处理器研究项目。该计划下的 SHAKTI 处理器项目旨在开发第一个印度本土的工业级处理器;其目标是研制 6 款基于 RISC-V 指令集的开源处理器核,其中涵盖了 32 位单核微控制器、64 核 64 位高性能处理器和安全处理器等。2016 年 1 月,印度电子信息技术部资助 4 500 万美元研制一款基于 RISC-V 指令集的 2 GHz 四核处理器。2017 年,印度政府表示将大力资助基于 RISC-V 的处理器项目,使 RISC-V 成为印度的国家事实指令集。2020 年 8 月,印度政府在全国发起“微处理器挑战”(Microprocessor Challenge)项目,以推动 RISC-V 微处理器的自主研发,提高国家的半导体设计和制造能力。
以色列、巴基斯坦、俄罗斯寻求多元化指令集架构共同发展。2017 年,以色列国家创新局成立 GenPro 工作组,旨在开发基于 RISC-V 的快速、高效且独立的处理平台。2019 年,巴基斯坦政府宣布将 RISC-V 列为国家级“首选架构”(preferred architecture)。2021 年,俄罗斯公布了一项以 RISC-V 部件为中心的国家数字化计划,该计划基于俄罗斯自研 Elbrus 芯片进行 RISC-V 部件扩展研究。
中国试图通过 RISC-V 打破芯片领域技术封锁。2021 年,在《中华人民共和国国民经济和 社会 发展第十四个五年规划和 2035 年远景目标纲要》中,我国首次明确将“开源”列入五年发展规划;“十四五”期间,将支持数字技术开源社区等创新联合体发展,完善开源知识产权和法律体系,鼓励企业开放软件源代码、硬件设计和应用服务。同时,各级政府也积极布局 RISC-V 架构芯片。2018 年 7 月,上海市经济和信息化委员会发布的《上海市经济信息化委关于开展 2018 年度第二批上海市软件和集成电路产业发展专项资金(集成电路和电子信息制造领域)项目申报工作的通知》将 RISC-V 相关产业列入政府产业扶持对象,而从事 RISC-V 架构相关设计和开发的公司将获得政策倾斜。2020 年 2 月,广东省人民政府办公厅印发的《加快半导体及集成电路产业发展若干意见的通知》中明确将 RISC-V 芯片设计列入广东省重点发展方向。2021 年 11 月,北京市委市政府印发《北京市“十四五”时期国际 科技 创新中心建设规划》,明确指出要研发基于 RISC-V 的区块链专用加速芯片,进一步提高芯片集成度,提高大规模区块链算法性能。
我国 RISC-V 架构芯片领域的重要研究方向态势与热点
学术界和产业界日益重视 RISC-V 的安全体系结构设计及验证。处理器安全对设备隐私信息的保护至关重要;设计 RISC-V 安全处理器及安全验证是 RISC-V 领域乃至体系结构领域的研究热点。特权模式和物理内存保护是安全嵌入式处理器的必备特性,RISC-V 指令集架构也采用特权模式来保障处理器的安全;同时,该架构提供了物理内存保护单元(PMP)实现内存访问控制以保证内存安全。其中,北京信息 科技 大学和清华大学微电子学研究所焦芃源等以一款 32 位 RISC-V 安全处理器为研究对象,通过异常处理程序对处理器状态、异常信息进行观测,提出了一套 RISC-V 特权模式和物理内存保护功能的测试方案;天津大学微电子学院刘强等设计了一种抗功耗分析攻击的 RISC-V 处理器的实现方法;上海交通大学并行与分布式系统研究所开发了基于 RISC-V 架构的全新可信执行环境“蓬莱”。同时,产业界许多公司以扩展硬件 IP 模块的方式推出安全解决方案,包括加密库、信任根、安全库等。
深耕物联网等新兴领域,特定领域专用 RISC-V 芯片蓬勃发展。当前,X86 和 ARM 两大指令集分别主宰了服务器+个人电脑(PC)和嵌入式移动设备;同时,物联网(IoT)、智联网(AIoT)等应用领域正在为 RISC-V 的发展提供新的机遇。RISC-V 架构能为物联网行业带来显著的灵活性和成本优势,同时也能推动异构计算系统的快速发展,因而能够适应智能物联网时代下的大容量万亿设备互联,场景丰富及碎片化和多样化需求。RISC-V 在加速和专用处理器领域,主要应用包括航天器的宇航芯片设计,面向物联网的智能芯片,面向安全的芯片,用作服务器上的主板管理控制器,以及图形处理器(GPU)和硬盘内部的控制器等。学术界,如中国科学院计算技术研究所(以下简称“计算所”)泛在计算团队,开展了基于 RISC-V 核心的轻量级神经网络处理器的研究, 探索 了 RISC-V 内核在物联网设备中的应用;上海市北斗导航与位置服务重点实验室则开展了基于 RISC-V 指令集的基带处理器扩展研究项目。而产业界则在控制领域与物联网领域涌现出大量的基于 RISC-V 的产品和应用案例。例如,阿里平头哥半导体有限公司的开源玄铁 RISC-V 系列处理器已应用于微控制器、工业控制、智能家电、智能电网、图像处理、人工智能、多媒体和 汽车 电子等领域。
寻求突破物联网生态, 探索 进入服务器、高性能处理器领域。目前,RISC-V 的研究及应用领域主要集中在以物联网为基础的工业控制、智能电网等多场景。但 RISC-V 因其本身低功耗、低成本特性,具备进入服务器、高性能领域的潜力。服务器定制化及 HPC 对加速和异构平台的需求增加,为 RISC-V 进入服务器和 HPC 领域提供了机会。计算所包云岗提出产业界可利用 AMD 公司的 Chiplet(小芯片)方式将中央处理器(CPU)、加速、输入/输出(I/O)放在不同晶圆上,其中 CPU 部分使用 RISC-V 架构,用 Chiplet 方式组成一个服务器芯片,以进入服务器市场。2021 年 6 月,计算所包云岗团队推出“香山”开源高性能 RISC-V 处理器核。它第一版架构代号“雁栖湖”,基于 28 nm 工艺流片。这标志着在计算所、鹏城实验室的技术支持下,国内发起的高性能 RISC-V 处理器开源项目正式诞生。
我国发展 RISC-Ⅴ 架构芯片的问题与建议
适当聚焦 RISC-V 架构,加快发展中国芯片产业体系。目前,国内处理器产业及科研领域所采用的指令集包罗万象,学术界和产业界基于 ARM、MIPS、PowerPC、SPARC、RISC-V、X86 等多种指令集进行了扩展。但多样化的指令集必然会分散基础软件开发力量,导致编译、 *** 作系统等基础软件开发者由于精力有限而无法兼顾多种指令集的优化,延缓自主生态的建设。近几年,随着 RISC-V 基金会从美国迁至瑞士,其治理架构发生重大变化,我国科研机构和企业在 RISC-V 基金会理事会高级别会员的比例显著提高。我国在 RISC-V 生态中的影响力日益增长,这为我国芯片产业的发展提供了新的机遇,以及开发新赛道的可能性。建议:我国在目前暂无成熟自主指令集架构的情况下,应抓住开源 RISC-V 架构兴起的机遇,调整芯片领域技术路线和产业政策,适当聚焦 RISC-V 架构,加快发展中国芯片产业体系。
促进 RISC-V 在处理器教育领域的应用,培育芯片设计人才。芯片领域的创新门槛高、投入大,严重阻碍了领域创新研究。芯片设计及制造的多个环节都需要巨额的资金与大量的人力投入。这种高门槛导致人才储备不足,因此如何能够降低芯片设计门槛成为亟待解决的问题。RISC-V 的开源性降低了创新投入门槛,发展开源芯片/硬件成为中国培育设计人才的新发展模式。2019 年 8 月,中国科学院大学启动了“一生一芯”计划,其目标是通过让本科生设计处理器芯片并完成流片,培养具有扎实理论与实践经验的处理器芯片设计人才。该计划是国内首次以流片为目标的教育计划,由 5 位 2016 级本科生主导完成一款 64 位 RISC-V 处理器 SoC 芯片设计并实现流片。事实上,学生是 RISC-V 整个生态建设中不可或缺的力量;包括上海 科技 大学在内的许多国内院校都在与企业一同培养人才,通过课程作业设计与企业研发相关联,将企业最新的技术及时引入课堂,充分发挥开源化的优势。建议:国家教育管理机构应当积极推进 RISC-V 产学相结合的发展模式,培育更多芯片设计人才。
(《中国科学院院刊》供稿)
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)