2006至2020年,物联网应用从闭环、碎片化走向开放、规模化,智慧城市、工业物联网、车联网等率先突破。中国物联网行业规模不断提升,行业规模保持高速增长,江苏、浙江、广东省行业规模均超千亿元。
截至到2019年,我国物联网市场规模已发展到15万亿元。未来巨大的市场需求将为物联网带来难得的发展机遇和广阔的发展空间。
近年来,我国政府出台各类政策大力发展物联网行业,不少地方政府也出台物联网专项规划、行动方案和发展意见,从土地使用、基础设施配套、税收优惠、核心技术和应用领域等多个方面为物联网产业的发展提供政策支持。在工业自动控制、环境保护、医疗卫生、公共安全等领域开展了一系列应用试点和示范,并取得了初步进展。
目前我国物联网行业规模已达万亿元。中国物联网行业规模超预期增长,网络建设和应用推广成效突出。在网络强国、新基建等国家战略的推动下,中国加快推动IPv6、NB-IoT、5G等网络建设,消费物联网和产业物联网逐步开始规模化应用,5G、车联网等领域发展取得突破。
政策推动我国物联网高速发展
自2013年《物联网发展专项行动计划》印发以来,国家鼓励应用物联网技术来促进生产生活和社会管理方式向智能化、精细化、网络化方向转变,对于提高国民经济和社会生活信息化水平,提升社会管理和公共服务水平,带动相关学科发展和技术创新能力增强,推动产业结构调整和发展方式转变具有重要意义。
以数字化、网络化、智能化为本质特征的第四次工业革命正在兴起。物联网作为新一代信息技术与制造业深度融合的产物,通过对人、机、物的全面互联,构建起全要素、全产业链、全价值链全面连接的新型生产制造和服务体系,是数字化转型的实现途径,是实现新旧动能转换的关键力量。
我国物联网行业呈高速增长状态 未来将有更广阔的空间
自2013年以来我国物联网行业规模保持高速增长,增速一直维持在15%以上,江苏、浙江、广东省行业规模均超千亿元。中国通信工业协会的数据表明,随着物联网信息处理和应用服务等产业的发展,中国物联网行业规模已经从2013年的4896亿元增长至2019年的15万亿元。
虽然我国物联网发展显著,但我国物联网行业仍处于成长期的早中期阶段。目前中国物联网及相关企业超过3万家,其中中小企业占比超过85%,创新活力突出,对产业发展推动作用巨大。
物联网作为中国新一代信息技术自主创新突破的重点方向,蕴含着巨大的创新空间,在芯片、传感器、近距离传输、海量数据处理以及综合集成、应用等领域,创新活动日趋活跃,创新要素不断积聚。
物联网在各行各业的应用不断深化,将催生大量的新技术、新产品、新应用、新模式。未来巨大的市场需求将为物联网带来难得的发展机遇和广阔的发展空间。
在政策、经济、社会、技术等因素的驱动下,2020年GSMA移动经济发展报告预测,2019-2025年复合增长率为9%左右,2020年中国物联网行业规模目标16亿元,按照目前物联网行业的发展态势,十三五规划的目标有望超预期完成;预计到2025年,中国物联网行业规模将超过27万亿元。
未来物联网行业将向着多元方向发展
标准化是物联网发展面临的最大挑战之一,它是希望在早期主导市场的行业领导者之间的一场斗争。目前我国物联网行业百家争鸣,还未有一个统一的标准出现。因此在未来可能通过不断竞争将会出现限数量的供应商主导市场,类似于现在使用的Windows、Mac和Linux *** 作系统。
合规化同样是当下物联网面临的问题之一,特别是数据隐私问题。目前数据隐私已成为网络社会的一个关键词,各种用户数据泄露或被滥用的事件频发,特别是Facebook的丑闻引发了全球担忧。
因此在未来,我国各种立法和监管机构将提出更加严格的用户数据保护规定,,用户的敏感数据可能会随着时间的推移而受到更严格的监管。
安全化是指预防物联网软件遭受网络黑客攻击,在未来,以安全为重点的物联网设施将受到更多的关注,特别是某些特定的基础行业,如医疗健康、安全安防、金融等领域。
多重技术推动物联网技术创新
从技术创新趋势来看,物联网行业发展的内生动力正在不断增强。连接技术不断突破,NB-Iot、eMTC、Lora等低功耗广域网全球商用化进程不断加速;物联网平台迅速增长,服务支撑能力迅速提升;
区块链、边缘计算、人工智能等新技术题材不断注入物联网,为物联网带来新的创新活力。受技术和产业成熟度的综合驱动,物联网呈现“边缘的智能化、连接的泛在化、服务的平台化、数据的延伸化”等特点。
—— 以上数据来源于前瞻产业研究院《中国物联网行业应用领域市场需求与投资预测分析报告》
峰会将进一步探讨区块链在与其它数字技术融合创新之后,如何通过打造可信数字底座,保护数据隐私,挖掘数据价值,赋能和加速各行各业的数字化转型。
在峰会开始前,区块链首席经济学家邹传伟团队围绕“区块链如何赋能数字化转型”这一问题,撰写系列行业研究报告,深度解读在新基建和数字化迁徙背景下,区块链如何与其它技术融合发展,发挥信息基础设施应有的作用。
本文作者:王普玉 校对:邹传伟
根据北京国信数字化转型技术研究院(国信院)与中关村信息技术和实体经济融合发展联盟(中信联)给出的定义,数字化转型是顺应新一轮 科技 革命和产业变革趋势,不断深化应用云计算、大数据、物联网、人工智能、区块链等新一代信息技术,激发数据要素创新驱动潜能,打造提升信息时代生存和发展能力,加速业务优化升级和创新转型,改造提升传统动能,培育发展新动能,创造、传递并获取新价值,实现转型升级和创新发展的过程。围绕数字化转型,本文将讨论以下三个问题:第一、从企业层面,为什么要数字化转型?第二、工业互联网平台在数字化转型中有什么作用?第三、分布式认知工业互联网在企业数字化转型中能提供什么?
一
数字化转型发展
在激烈的市场竞争中,企业需要依靠产品质量、价格、服务以及长期积累的品牌形象来维持市场竞争力,但随着我国人口红利消失导致的人力成本上涨,以及国际贸易形势不明朗及疫情影响导致的市场发展受阻,让企业原有竞争优势正在消失,处于价值链最底层的工业企业更是雪上加霜。该如何走出困境?目前主要从两方面破冰,第一种是降低运营成本继续保持价格优势;第二种是通过创新商业模式扩大市场销售来提升利润。
在讨论运营成本前,我们引入两组概念,第一组是供应链模式:供给推动式和需求拉动式;第二组是四大利润源。
1、供应链模式
供给推动式是指企业根据市场预测数据进行产品设计、生产及销售;
而需求拉动式是指企业根据市场订单,按需进行快速响应,通过高效计划、组织、协调和控制来满足产品生产及供应。
2、四大利润源
市场永远在追求着更低的价格和更高的质量。在价格控制方面,如表1所示,主要经历了四个阶段:第一阶段主要通过控制原材料成本、扩大规模效应获取利润。当第一利润源触及上限时,开始了第二利润源,通过精益管理提升企业内工作效率及延长员工的工作时间来降低用工成本。在新的利润源再次进入上限时,人们发现物流成本占据企业总运营成本的30%,因此,降低物流成本成为第三利润源。
表1 四大利润源对比
前三个利润源均是围绕企业内部成本控制来增加收益,但当企业内部运营成本节省达到上限时,人们注意到上游供应商及下游客户的运营管理问题。一个具备完整功能的产品进入市场前,需要供应链上多个公司的共同配合,其中任何一家企业的高运营成本都会导致最终产品的价格上涨,这会使产品在激烈的市场竞争中丧失竞争力。于是围绕着供应链信息集成及信息共享开始了新一轮的降成本浪潮,被称为第四利润源。
如表1所示,从第一到第四利润源,每一阶段都有各种系统在信息处理、存储和管理中的支撑,例如生产执行管理系统MES,企业资源管理ERP,仓储管理系统WMS,供应链管理系统SCM等等。
在经历了四个利润源后,未来新的利润源又在哪里?政府、企业、研究机构都在尝试寻找答案,例如上海第二工业大学郝皓教授在2015年提出将逆向物流作为第五利润源,通过逆向物流实现产品再销售、再利用、再循环和再制造的全生命周期管理。也有企业认为以需求拉动式为导向的个性化定制将成为第五利润源。以上说法都有道理,但都不准确,本文认为,真正的第五利润源已经在路上,即企业数字化转型。在过去十几年,技术的快速发展衍生出大量新的商业模式,包括新零售、直播带货、社区团购等,但上游工业领域却依然保持着传统的运作模式,无论是逆向物流发展带动全生命周期闭环管理,还是C2M定制化商业模式,都需要依赖于各环节的快速响应,对企业数字化管理要求高。因此,无论是企业对新利润源挖掘的需要,还是市场端的需求,工业企业数字化转型势在必行。
不同于前四个利润源的相互独立,第五利润源是应用新技术重新赋予第一、二、三、四利润源全新的生命,同时由数据驱动的创新商业模式将大量出现。因此,第五利润源不仅能够降低运营成本,也能够提高主动盈利能力。
二
工业互联网平台的价值
1、工业互联网平台之第一利润源
IT与OT的融合,实现人、机、物、料、法、环的数据实时采集及传输,能够做到生产过程的实时监测,再应用AI、大数据分析等技术实现自动化智能巡检、智能质检、智能故障预测、智能参数调优、智能耗能优化、智能设备运维、智能盘点等,能提高生产作业效率、降低成本,从单机智能升级为系统智能。
2、工业互联网平台之第二利润源
传统制造业的管理一直围绕着人,产品从0到1的过程,依靠人力难以实现或实现效率低的工作,可以使用机械设备替代,而经过工业革命和信息化时代的影响,出现了大量节省人力的机械设备和 *** 作系统(MRP、MRPII、MES等),让生产效率提升、生产成本降低。随着信息技术的发展,虽然有滞后数据可以作为参考,但其本质依然围绕人的经验和人的现场 *** 作。而工业互联网能够赋予第二利润源全新的角色,从运营管理中解放人的执行任务,例如质检、故障排查等工作通过AI和大数据分析实现运营智能化管理。在执行人员减少后,企业需要更多创新者,让企业创新发展迭代速度更快。其次,随着人的经验积累转换为知识图谱,将经验和知识域可视化,指导人工智能算法迭代和决策制定。
3、工业互联网之第三利润源
在工业物联网领域,物流发展走在比较靠前,经历了人工物流、机械物流、自动化物流到现在智能物流,物流的管理效率和成本得到了极大改善。例如运输管理,从早期货物运输监控数据需要依赖于运输工具挂靠点的数据回传及汇总,到现在能够通过GPS、RFID、各类传感器,实时掌握运输途中货物的温湿度、地理位置和件数等信息,能够根据运输目的地和实时交通拥堵情况对运输线路规划等。受技术、资本等各方面影响,目前智能物流主要在第三方物流企业和电商企业发展迅速,而工业企业物流发展较为缓慢,大多仍处于机械物流和自动化物流阶段。工业互联网平台能够帮助工业企业实现快速升级转型,降低系统开发技术难度和成本,IaaS、PaaS、SaaS等平台能够减少系统从0到1开发时间,实现快速低成本数字化转型升级。
4、工业互联网之第四利润源
供应链集成在一定程度上提升企业合作、降低供应链成本以及库存牛鞭效应[1],但无论企业内部供应链还是 社会 供应链,遗留了一个对多方协作卡脖子的问题,即数据孤岛问题。前面我们介绍第一到第四利润源,提到了MRP、MRPII、ERP、SAP、MES、SCM等系统,每个系统如同孤立的数据烟囱,对协作效率有着极大影响。主要有两方面原因:第一、现有EDI数据孤岛打通方案成本高,中小企业难以负担;第二、涉及供需多方协作时,彼此缺乏信任,不愿将企业内部数据共享给外部。工业互联网平台提供多种数据采集及处理解决方案,打破数据孤岛,实现数据无阻碍流转。在数据使用中,通过隐私计算保证数据安全,同时合理授权,让数据可用不可见,解决数据共享的后顾之忧。
5、工业互联网平台之第五利润源
在数字化10阶段,属于人适应系统;而进入数字化20阶段,适应公司现有作业模式的定制化软件将起着至关重要的作用。
图1:数字化转型10和20阶段的对比
因此,从技术角度,平台如何让企业快速及高效地完成定制化软件的开发,这将对工业企业数字化转型起着非常重要的作用。从市场现有产品看,包括基础设施即服务IaaS,平台即服务PaaS和软件即服务SaaS,能够让工业企业方便地利用平台提供商现成的低代码、甚至零代码工具完成系统开发,实现“人人都能做开发者”,即解决“技术人员不懂业务,业务人员不懂技术,开发的系统不好用”问题。未来低代码(或零代码)开发工具如同word、excel等办公软件,平台把各类接口做成图形界面,让不懂代码开发的人,通过图标拖拉的方式,开发自己需要的软件来减少低效率的重复工作。员工从原来被动执行者变为创新者,参与进从上到下的数字化改革中,用工具真正方便业务人员工作。
三
基于区块链技术的分布式认知工业互联网
社会 经济分为生产和流通两个领域,中心化工业互联网平台使用数字化技术替代信息化技术解决的是生产领域问题,而基于区块链技术的分布式认知工业互联网,解决的是流通领域的数据信任问题,但流通领域数据又会影响到生产领域的产品研发、产品质量管理等。
1、降低信任成本
商业模式正在从单边(规模效应)走向双边(网络效应),进入数字化时代后走向多边平台(生态效应)。中心化方式似乎也能够解决信任问题,但中心化模式下的信任主要依靠第三方权威机构的背书,这种方式成本高、效率低。例如,国际贸易买卖双方不信任的情况下,通过银行背书使用信用证服务解决付款问题;为满足银行要求,双方需要提供大量的证明来满足信用证条款,效率非常低下且成本高昂。但如果使用区块链技术,将真实数据从源头上链,保证数据安全、可信以及不可篡改。交易前,买卖双方拥有彼此过往真实的交易记录,以及产品的生产信息,这些信息是否会有助于降低交易的撮合成本?在交易过程中,通过智能合约的应用,一旦达成某个约定即可自动完成付款,这将会极大降低交易成本和交易时间。尤其进入多边平台,如果仍然使用中心化的信用证明体系,将无法构筑生态建设的护城河——信任。
2、重新定义协作关系
供应链多方合作,中心化的共识机制和治理方案更多体现在合同层面,但无法将彼此的利益真正绑定,较难促进生态的良性发展。但在去中心化解决方案中,参与方将资产以token或积分形式置于链上,从技术上实现多方利益绑定,一旦任何一方做出有损生态建设的行为,将会影响token或积分价值,这会影响联盟链上所有参与者的利益。在分布式认知工业互联网平台中,联盟中每个参与者都会积极维护生态利益,因为这也等同于维护着自己的利益。
3、可信数据流转
在产品研发或产品全生命周期管理中,流通数据需要工业企业从下游多个合作商处获取。而传统技术下难以保证数据真实性和安全性,在分布认知工业互联网中,隐私计算能够做到多方数据可用不可见,保证数据安全及合规。此外,根据数据贡献量给与合作商token或积分奖励,鼓励多方数据共享及流转。未来数据交易市场可能会出现更多合规的形式,例如基于区块链技术的数据信托、数据银行等模式。
4、保证数据安全
传统模式下,工业企业依靠于物理隔离实现厂内数据与外界的隔离,但在OT与IT融合下物理隔离屏障被打破,如何保证数据出本地后的安全则需要依靠多方共同努力。在设备通信中,需要做好设备身份认证管理,防止数据被攻击,而分布式认知工业互联网平台通过设备公私钥实现匿名管理,有效降低攻击风险。在数据存储中,采用分布式存储技术,即使单点攻击也无法让攻击者获取完整数据。
5、赋能商业模式创新
可信数据将开启全新的商业模式创新时代,每个组织的商业角色有可能会发生改变。传统商业模式下(供给推动模式),信息是非常碎片化的,供应链上不同参与者都拥有一部分产品相关的碎片数据,用这些不完整的数据去做产品升级、客户服务,难以达到最佳目的。但技术发展的今天,市场开始根据消费习惯、消费特征等因素挖掘每个消费者的需求,制造方式也从M2C进入C2M时代,这些都需要有更多完整、可信、合规的数据,例如,电动 汽车 并不是所有人都需要1000km续航的电池,通过区块链技术,用户授权驾驶数据给电动 汽车 公司,为其配置最合适、性价比最优的电池。再比如, 汽车 保险不再以车辆价值、出险次数等作为保险费用收取的单一指标,未来可能会基于可信里程数据进行保险费用收取。除商业模式的变化,每个组织的商业角色也可能会发生变化,电动 汽车 生产厂商,角色也将从生产商转变为服务商,以蔚来 汽车 为例的车电分离模式,以租代售模式,让 汽车 生产厂商的业务延展到产品全生命周期的管理中,这些模式创新仅仅是数字化时代的开始。
是如何确保设备本身安全。某些设备或设施可能无人值守地运行,因此不受频繁的安全性影响。报告称,使这些设备防篡改可能是有利的,因为这种类型的端点强化可以帮助阻止潜在的入侵者获取数据。它也可能抵御黑客或其他网络犯罪分子的攻击。
作为一种最佳实践,安全端点强化可能意味着部署一种分层方法,要求攻击者绕过多重障碍,旨在保护设备及其数据免遭未经授权的访问和使用。企业应该保护已知的漏洞,如开放的TCP/UDP端口,开放的串行端口,开放的密码提示,Web服务器、未加密的通信、无线连接等注入代码的位置。
另一个保护设备的办法是根据需要升级或部署安全补丁。但请记住,许多设备供应商在构建和销售设备时并不关注安全性。正如调查报告指出的那样,许多物联网设备被破坏后是不可修补的,因此无法保证安全。在投资的设备采用工业物联网之前,需要评估设备的安全功能,并确保供应商对设备进行彻底的安全测试。
当物联网设备试图连接到网络或服务时,要小心地管理物联网设备的身份验证,以确保信任是非常重要的。公钥基础设施(PKI)和数字证书为物联网设备身份和信任提供了安全基础。
如何保障物联网的安全?
物联网安全解决方案
以互联网为代表的计算机网络技术是二十世纪计算机科学的一项伟大成果,给我们的生活带来了深刻的变化,物联网是在互联网基础上发展而来的新一代网络。 物联网通过射频识别(RFID)、红外感应器、全球定位系统、激光扫描器、传感器等信息传感设备,按照约定的协议,把任何物品与互联网连接起来,进行信息交换和通讯,使现实世界中的所有物品与网络进行连接,实现了智能化识别、定位、跟踪、监控和管理。物联网的应用
物联网发展至今,产业规模不断扩大,产业价值不断增加,物联网带来的价值和社会效应日益明显。 未来物联网将广泛用于智能交通、地防入侵、环境保护、政府工作、公共安全、智能电网、工业监测等多个领域。物联网是继计算机、互联网与移动通信网之后的又一次信息产业浪潮。有专家预测10 年内物联网将大规模普及,这一技术将会发展成为一个上万亿元规模的高科技市场。
例如,电力企业经营管理就体现了运用物联网关键技术的最佳实践。应用物联网技术和现代管理理念对燃料的管理流程进行规范化,采用先进的RFID 射频识别、视频监控、红外线感应、车辆跟踪定位、自动化计量系统,与企业原有的管理信息系统紧密结合,对企业燃料采购计划、计量检验、入库和结算进行全方位监管,对燃料实行集中控制,为每批次燃料均准备独立的身份标签,对燃料本身与燃料合同、计量检验等进行一体化管理,实现燃料管理全过程的自动、闭环控制。还可以把传感器嵌入到电力企业的生产设备、物资运输设备等各个环节中去,去捕获、收集设备运行状况以及技术人员管理的信息,进而通过软件应用系统进行处理和分析,提出辅助决策或预案,整合电力系统中环境基础设施、材料设备以及人员的控制和管理,使人们可以更加精细和灵活的管理生产经营。
物联网风险及其管理
发展物联网的价值无疑是巨大的,物联网对于当前社会的影响也是不容忽视的,在安全与隐私方面的不利影响已经被人们所认识和关注,成为影响物联网发展的风险因素。物联网从技术上体现了现代科技进步,然而物联网的发展在社会生活的各领域存在诸多风险,需要细致的分析新技术对社会的影响,特别是要积极的应对物联网面临的风险。
物联网接入的各种传感器很可能成为“监听和监视”的工具,物联网的商业应用,为了创造商机挖掘个人隐私,极大地威胁隐私安全,比如传感器在何处设置、由谁设置、谁能阅读物联网信息等等,这些物联网隐私和信息权利的复杂性加剧了物联网商业滥用的风险。 物联网电子标签的使用使风险威胁来自两个方面:首先是标签信息泄露问题,其次是通过标签的唯一标识符进行恶意追踪问题。信息泄露是指暴露标签发送信息,当电子标签应用在药品上时,可能暴露药物使用者的病理;当电子档案、生物特征添加到电子标签中时,标签信息泄露问题便极大地危害了个人隐私。恶意追踪可以在不同的时间不同的地点识别标签,得出标签的定位信息。因此可以通过标签的定位信息获得标签持有者的行踪,并且标签识别装备相对价格低廉,极易隐藏并且使用寿命很长,这就加剧了恶意追踪的风险。
对此,笔者建议,在物联网的风险管理中,应深入研究物联网的影响,构建统一的物联网监管体系,综合治理物联网风险,以切实可行的综合措施引导物联网健康发展,减少物联网风险。 关键技术逐渐成熟,管理机制逐步规范,隐私保护与信息安全同步推进,推动物联网内不同对象间的信息交换更加便捷、高效、安全、低成本、自主式、智能化。从技术现代性的角度,思考物联网的问题和风险,对物联网的未来发展富有启发意义。
2009年,恶意软件曾 *** 控某核浓缩工厂的离心机,导致所有离心机失控。该恶意软件又称“震网”,通过闪存驱动器入侵独立网络系统,并在各生产网络中自动扩散。通过“震网”事件,我们看到将网络攻击作为武器破坏联网实体工厂的可能。这场战争显然是失衡的:企业必须保护众多的技术,而攻击者只需找到一个最薄弱的环节。
但非常重要的一点是,企业不仅需要关注外部威胁,还需关注真实存在却常被忽略的网络风险,而这些风险正是由企业在创新、转型和现代化过程中越来越多地应用智能互联技术所引致的。否则,企业制定的战略商业决策将可能导致该等风险,企业应管控并降低该等新兴风险。
工业40时代,智能机器之间的互联性不断增强,风险因素也随之增多。工业40开启了一个互联互通、智能制造、响应式供应网络和定制产品与服务的时代。借助智能、自动化技术,工业40旨在结合数字世界与物理 *** 作,推动智能工厂和先进制造业的发展 。但在意图提升整个制造与供应链流程的数字化能力并推动联网设备革命性变革过程中,新产生的网络风险让所有企业都感到措手不及。针对网络风险制定综合战略方案对制造业价值链至关重要,因为这些方案融合了工业40的重要驱动力:运营技术与信息技术。
随着工业40时代的到来,威胁急剧增加,企业应当考虑并解决新产生的风险。简而言之,在工业40时代制定具备安全性、警惕性和韧性的网络风险战略将面临不同的挑战。当供应链、工厂、消费者以及企业运营实现联网,网络威胁带来的风险将达到前所未有的广度和深度。
在战略流程临近结束时才考虑如何解决网络风险可能为时已晚。开始制定联网的工业40计划时,就应将网络安全视为与战略、设计和运营不可分割的一部分。
本文将从现代联网数字供应网络、智能工厂及联网设备三大方面研究各自所面临的网络风险。3在工业40时代,我们将探讨在整个生产生命周期中(图1)——从数字供应网络到智能工厂再到联网物品——运营及信息安全主管可行的对策,以预测并有效应对网络风险,同时主动将网络安全纳入企业战略。
数字化制造企业与工业40
工业40技术让数字化制造企业和数字供应网络整合不同来源和出处的数字化信息,推动制造与分销行为。
信息技术与运营技术整合的标志是向实体-数字-实体的联网转变。工业40结合了物联网以及相关的实体和数字技术,包括数据分析、增材制造、机器人技术、高性能计算机、人工智能、认知技术、先进材料以及增强现实,以完善生产生命周期,实现数字化运营。
工业40的概念在物理世界的背景下融合并延伸了物联网的范畴,一定程度上讲,只有制造与供应链/供应网络流程会经历实体-数字和数字-实体的跨越(图2)。从数字回到实体的跨越——从互联的数字技术到创造实体物品的过程——这是工业40的精髓所在,它支撑着数字化制造企业和数字供应网络。
即使在我们 探索 信息创造价值的方式时,从制造价值链的角度去理解价值创造也很重要。在整个制造与分销价值网络中,通过工业40应用程序集成信息和运营技术可能会达到一定的商业成果。
不断演变的供应链和网络风险
有关材料进入生产过程和半成品/成品对外分销的供应链对于任何一家制造企业都非常重要。此外,供应链还与消费者需求联系紧密。很多全球性企业根据需求预测确定所需原料的数量、生产线要求以及分销渠道负荷。由于分析工具也变得更加先进,如今企业已经能够利用数据和分析工具了解并预测消费者的购买模式。
通过向整个生态圈引入智能互联的平台和设备,工业40技术有望推动传统线性供应链结构的进一步发展,并形成能从价值链上获得有用数据的数字供应网络,最终改进管理,加快原料和商品流通,提高资源利用率,并使供应品更合理地满足消费者需求。
尽管工业40能带来这些好处,但数字供应网络的互联性增强将形成网络弱点。为了防止发生重大风险,应从设计到运营的每个阶段,合理规划并详细说明网络弱点。
在数字化供应网络中共享数据的网络风险
随着数字供应网络的发展,未来将出现根据购买者对可用供应品的需求,对原材料或商品进行实时动态定价的新型供应网络。5由于只有供应网络各参与方开放数据共享才可能形成一个响应迅速且灵活的网络,且很难在保证部分数据透明度的同时确保其他信息安全,因此形成新型供应网络并非易事。
因此,企业可能会设法避免信息被未授权网络用户访问。 此外,他们可能还需对所有支撑性流程实施统一的安全措施,如供应商验收、信息共享和系统访问。企业不仅对这些流程拥有专属权利,它们也可以作为获取其他内部信息的接入点。这也许会给第三方风险管理带来更多压力。在分析互联数字供应网络的网络风险时,我们发现不断提升的供应链互联性对数据共享与供应商处理的影响最大(图3)。
为了应对不断增长的网络风险,我们将对上述两大领域和应对战略逐一展开讨论。
数据共享:更多利益相关方将更多渠道获得数据
企业将需要考虑什么数据可以共享,如何保护私人所有或含有隐私风险的系统和基础数据。比 如,数字供应网络中的某些供应商可能在其他领域互为竞争对手,因此不愿意公开某些类型的数据,如定价或专利品信息。此外,供应商可能还须遵守某些限制共享信息类型的法律法规。因此,仅公开部分数据就可能让不良企图的人趁机获得其他信息。
企业应当利用合适的技术,如网络分段和中介系统等,收集、保护和提供信息。此外,企业还应在未来生产的设备中应用可信的平台模块或硬件安全模块等技术,以提供强大的密码逻辑支持、硬件授权和认证(即识别设备的未授权更改)。
将这种方法与强大的访问控制措施结合,关键任务 *** 作技术在应用点和端点的数据和流程安全将能得到保障。
在必须公开部分数据或数据非常敏感时,金融服务等其他行业能为信息保护提供范例。目前,企业纷纷开始对静态和传输中的数据应用加密和标记等工具,以确保数据被截获或系统受损情况下的通信安全。但随着互联性的逐步提升,金融服务企业意识到,不能仅从安全的角度解决数据隐私和保密性风险,而应结合数据管治等其他技术。事实上,企业应该对其所处环境实施风险评估,包括企业、数字供应网络、行业控制系统以及联网产品等,并根据评估结果制定或更新网络风险战略。总而言之,随着互联性的不断增强,上述所有的方法都能找到应实施更高级预防措施的领域。
供应商处理:更广阔市场中供应商验收与付款
由于新伙伴的加入将使供应商体系变得更加复杂,核心供应商群体的扩张将可能扰乱当前的供应商验收流程。因此,追踪第三方验收和风险的管治、风险与合规软件需要更快、更自主地反应。此外,使用这些应用软件的信息安全与风险管理团队还需制定新的方针政策,确保不受虚假供应商、国际制裁的供应商以及不达标产品分销商的影响。消费者市场有不少类似的经历,易贝和亚马逊就曾发生过假冒伪劣商品和虚假店面等事件。
区块链技术已被认为能帮助解决上述担忧并应对可能发生的付款流程变化。尽管比特币是建立货币 历史 记录的经典案例,但其他企业仍在 探索 如何利用这个新工具来决定商品从生产线到各级购买者的流动。7创建团体共享 历史 账簿能建立信任和透明度,通过验证商品真实性保护买方和卖方,追踪商品物流状态,并在处理退换货时用详细的产品分类替代批量分拣。如不能保证产品真实性,制造商可能会在引进产品前,进行产品测试和鉴定,以确保足够的安全性。
信任是数据共享与供应商处理之间的关联因素。企业从事信息或商品交易时,需要不断更新其风险管理措施,确保真实性和安全性;加强监测能力和网络安全运营,保持警惕性;并在无法实施信任验证时保护该等流程。
在这个过程中,数字供应网络成员可参考其他行业的网络风险管理方法。某些金融和能源企业所采用的自动交易模型与响应迅速且灵活的数字供应网络就有诸多相似之处。它包含具有竞争力的知识产权和企业赖以生存的重要资源,所有这些与数字供应网络一样,一旦部署到云端或与第三方建立联系就容易遭到攻击。金融服务行业已经意识到无论在内部或外部算法都面临着这样的风险。因此,为了应对内部风险,包括显性风险(企业间谍活动、蓄意破坏等)和意外风险(自满、无知等),软件编码和内部威胁程序必须具备更高的安全性和警惕性。
事实上,警惕性对监测非常重要:由于制造商逐渐在数字供应网络以外的生产过程应用工业40技术,网络风险只会成倍增长。
智能生产时代的新型网络风险
随着互联性的不断提高,数字供应网络将面临新的风险,智能制造同样也无法避免。不仅风险的数量和种类将增加,甚至还可能呈指数增长。不久前,美国国土安全部出版了《物联网安全战略原则》与《生命攸关的嵌入式系统安全原则》,强调应关注当下的问题,检查制造商是否在生产过程中直接或间接地引入与生命攸关的嵌入式系统相关的风险。
“生命攸关的嵌入式系统”广义上指几乎所有的联网设备,无论是车间自动化系统中的设备或是在第三方合约制造商远程控制的设备,都应被视为风险——尽管有些设备几乎与生产过程无关。
考虑到风险不断增长,威胁面急剧扩张,工业40时代中的制造业必须彻底改变对安全的看法。
联网生产带来新型网络挑战
随着生产系统的互联性越来越高,数字供应网络面临的网络威胁不断增长扩大。不难想象,不当或任意使用临时生产线可能造成经济损失、产品质量低下,甚至危及工人安全。此外,联网工厂将难以承受倒闭或其他攻击的后果。有证据表明,制造商仍未准备好应对其联网智能系统可能引发的网络风险: 2016年德勤与美国生产力和创新制造商联盟(MAPI)的研究发现,三分之一的制造商未对工厂车间使用的工业控制系统做过任何网络风险评估。
可以确定的是,自进入机械化生产时代,风险就一直伴随着制造商,而且随着技术的进步,网络风险不断增强,物理威胁也越来越多。但工业40使网络风险实现了迄今为止最大的跨越。各阶段的具体情况请参见图4。
从运营的角度看,在保持高效率和实施资源控制时,工程师可在现代化的工业控制系统环境中部署无人站点。为此,他们使用了一系列联网系统,如企业资源规划、制造执行、监控和数据采集系统等。这些联网系统能够经常优化流程,使业务更加简单高效。并且,随着系统的不断升级,系统的自动化程度和自主性也将不断提高(图5)。
从安全的角度看,鉴于工业控制系统中商业现货产品的互联性和使用率不断提升,大量暴露点将可能遭到威胁。与一般的IT行业关注信息本身不同,工业控制系统安全更多关注工业流程。因此,与传统网络风险一样,智能工厂的主要目标是保证物理流程的可用性和完整性,而非信息的保密性。
但值得注意的是,尽管网络攻击的基本要素未发生改变,但实施攻击方式变得越来越先进(图5)。事实上,由于工业40时代互联性越来越高,并逐渐从数字化领域扩展到物理世界,网络攻击将可能对生产、消费者、制造商以及产品本身产生更广泛、更深远的影响(图6)。
结合信息技术与运营技术:
当数字化遇上实体制造商实施工业40 技术时必须考虑数字化流程和将受影响的机器和物品,我们通常称之为信息技术与运营技术的结合。对于工业或制造流程中包含了信息技术与运营技术的公司,当我们探讨推动重点运营和开发工作的因素时,可以确定多种战略规划、运营价值以及相应的网络安全措施(图7)。
首先,制造商常受以下三项战略规划的影响:
健康 与安全: 员工和环境安全对任何站点都非常重要。随着技术的发展,未来智能安全设备将实现升级。
生产与流程的韧性和效率: 任何时候保证连续生产都很重要。在实际工作中,一旦工厂停工就会损失金钱,但考虑到重建和重新开工所花费的时间,恢复关键流程可能将导致更大的损失。
检测并主动解决问题: 企业品牌与声誉在全球商业市场中扮演着越来越重要的角色。在实际工作中,工厂的故障或生产问题对企业声誉影响很大,因此,应采取措施改善环境,保护企业的品牌与声誉。
第二,企业需要在日常的商业活动中秉持不同的运营价值理念:
系统的可 *** 作性、可靠性与完整性: 为了降低拥有权成本,减缓零部件更换速度,站点应当采购支持多个供应商和软件版本的、可互 *** 作的系统。
效率与成本规避: 站点始终承受着减少运营成本的压力。未来,企业可能增加现货设备投入,加强远程站点诊断和工程建设的灵活性。
监管与合规: 不同的监管机构对工业控制系统环境的安全与网络安全要求不同。未来企业可能需要投入更多,以改变环境,确保流程的可靠性。
工业40时代,网络风险已不仅仅存在于供应网络和制造业,同样也存在于产品本身。 由于产品的互联程度越来越高——包括产品之间,甚至产品与制造商和供应网络之间,因此企业应该明白一旦售出产品,网络风险就不会终止。
风险触及实体物品
预计到2020年,全球将部署超过200亿台物联网设备。15其中很多设备可能会被安装在制造设备和生产线上,而其他的很多设备将有望进入B2B或B2C市场,供消费者购买使用。
2016年德勤与美国生产力和创新制造商联盟(MAPI)的研究结果显示,近一半的制造商在联网产品中采用移动应用软件,四分之三的制造商使用Wi-Fi网络在联网产品间传输数据。16基于上述网络途径的物联通常会形成很多漏洞。物联网设备制造商应思考如何将更强大、更安全的软件开发方法应用到当前的物联网开发中,以应对设备常常遇到的重大网络风险。
尽管这很有挑战性,但事实证明,企业不能期望消费者自己会更新安全设置,采取有效的安全应对措施,更新设备端固件或更改默认设备密码。
比如,2016年10月,一次由Mirai恶意软件引发的物联网分布式拒绝服务攻击,表明攻击者可以利用这些弱点成功实施攻击。在这次攻击中,病毒通过感染消费者端物联网设备如联网的相机和电视,将其变成僵尸网络,并不断冲击服务器直至服务器崩溃,最终导致美国最受欢迎的几家网站瘫痪大半天。17研究者发现,受分布式拒绝服务攻击损害的设备大多使用供应商提供的默认密码,且未获得所需的安全补丁或升级程序。18需要注意的是,部分供应商所提供的密码被硬编码进了设备固件中,且供应商未告知用户如何更改密码。
当前的工业生产设备常缺乏先进的安全技术和基础设施,一旦外围保护被突破,便难以检测和应对此类攻击。
风险与生产相伴而行
由于生产设施越来越多地与物联网设备结合,因此,考虑这些设备对制造、生产以及企业网络所带来的安全风险变得越来越重要。受损物联网设备所产生的安全影响包括:生产停工、设备或设施受损如灾难性的设备故障,以及极端情况下的人员伤亡。此外,潜在的金钱损失并不仅限于生产停工和事故整改,还可能包括罚款、诉讼费用以及品牌受损所导致的收入减少(可能持续数月甚至数年,远远超过事件实际持续的时间)。下文列出了目前确保联网物品安全的一些方法,但随着物品和相应风险的激增,这些方法可能还不够。
传统漏洞管理
漏洞管理程序可通过扫描和补丁修复有效减少漏洞,但通常仍有多个攻击面。攻击面可以是一个开放式的TCP/IP或UDP端口或一项无保护的技术,虽然目前未发现漏洞,但攻击者以后也许能发现新的漏洞。
减少攻击面
简单来说,减少攻击面即指减少或消除攻击,可以从物联网设备制造商设计、建造并部署只含基础服务的固化设备时便开始着手。安全所有权不应只由物联网设备制造商或用户单独所有;而应与二者同样共享。
更新悖论
生产设施所面临的另一个挑战被称为“更新悖论”。很多工业生产网络很少更新升级,因为对制造商来说,停工升级花费巨大。对于某些连续加工设施来说,关闭和停工都将导致昂贵的生产原材料发生损失。
很多联网设备可能还将使用十年到二十年,这使得更新悖论愈加严重。认为设备无须应用任何软件补丁就能在整个生命周期安全运转的想法完全不切实际。20 对于生产和制造设施,在缩短停工时间的同时,使生产资产利用率达到最高至关重要。物联网设备制造商有责任生产更加安全的固化物联网设备,这些设备只能存在最小的攻击表面,并应利用默认的“开放”或不安全的安全配置规划最安全的设置。
制造设施中联网设备所面临的挑战通常也适用基于物联网的消费产品。智能系统更新换代很快,而且可能使消费型物品更容易遭受网络威胁。对于一件物品来说,威胁可能微不足道,但如果涉及大量的联网设备,影响将不可小觑——Mirai病毒攻击就是一个例子。在应对威胁的过程中,资产管理和技术战略将比以往任何时候都更重要。
人才缺口
2016年德勤与美国生产力和创新制造商联盟(MAPI)的研究表明,75%的受访高管认为他们缺少能够有效实施并维持安全联网生产生态圈的技能型人才资源。21随着攻击的复杂性和先进程度不断提升,将越来越难找到高技能的网络安全人才,来设计和实施具备安全性、警觉性和韧性的网络安全解决方案。
网络威胁不断变化,技术复杂性越来越高。搭载零日攻击的先进恶意软件能够自动找到易受攻击的设备,并在几乎无人为参与的情况下进行扩散,并可能击败已遭受攻击的信息技术/运营技术安全人员。这一趋势令人感到不安,物联网设备制造商需要生产更加安全的固化设备。
多管齐下,保护设备
在工业应用中,承担一些非常重要和敏感任务——包括控制发电与电力配送,水净化、化学品生产和提纯、制造以及自动装配生产线——的物联网设备通常最容易遭受网络攻击。由于生产设施不断减少人为干预,因此仅在网关或网络边界采取保护措施的做法已经没有用(图8)。
从设计流程开始考虑网络安全
制造商也许会觉得越来越有责任部署固化的、接近军用级别的联网设备。很多物联网设备制造商已经表示他们需要采用包含了规划和设计的安全编码方法,并在整个硬件和软件开发生命周期内采用领先的网络安全措施。22这个安全软件开发生命周期在整个开发过程中添加了安全网关(用于评估安全控制措施是否有效),采用领先的安全措施,并用安全的软件代码和软件库生产具备一定功能的安全设备。通过利用安全软件开发生命周期的安全措施,很多物联网产品安全评估所发现的漏洞能够在设计过程中得到解决。但如果可能的话,在传统开发生命周期结束时应用安全修补程序通常会更加费力费钱。
从联网设备端保护数据
物联网设备所产生的大量信息对工业40制造商非常重要。基于工业40的技术如高级分析和机器学习能够处理和分析这些信息,并根据计算分析结果实时或近乎实时地做出关键决策。这些敏感信息并不仅限于传感器与流程信息,还包括制造商的知识产权或者与隐私条例相关的数据。事实上,德勤与美国生产力和创新制造商联盟(MAPI)的调研发现,近70%的制造商使用联网产品传输个人信息,但近55%的制造商会对传输的信息加密。
生产固化设备需要采取可靠的安全措施,在整个数据生命周期间,敏感数据的安全同样也需要得到保护。因此,物联网设备制造商需要制定保护方案:不仅要安全地存放所有设备、本地以及云端存储的数据,还需要快速识别并报告任何可能危害这些数据安全的情况或活动。
保护云端数据存储和动态数据通常需要采用增强式加密、人工智能和机器学习解决方案,以形成强大的、响应迅速的威胁情报、入侵检测以及入侵防护解决方案。
随着越来越多的物联网设备实现联网,潜在威胁面以及受损设备所面临的风险都将增多。现在这些攻击面可能还不足以形成严重的漏洞,但仅数月或数年后就能轻易形成漏洞。因此,设备联网时必须使用补丁。确保设备安全的责任不应仅由消费者或联网设备部署方承担,而应由最适合实施最有效安全措施的设备制造商共同分担。
应用人工智能检测威胁
2016年8月,美国国防高级研究计划局举办了一场网络超级挑战赛,最终排名靠前的七支队伍在这场“全机器”的黑客竞赛中提交了各自的人工智能平台。网络超级挑战赛发起于2013年,旨在找到一种能够扫描网络、识别软件漏洞并在无人为干预的情况下应用补丁的、人工智能网络安全平台或技术。美国国防高级研究计划局希望借助人工智能平台大大缩短人类以实时或接近实时的方式识别漏洞、开发软件安全补丁所用的时间,从而减少网络攻击风险。
真正意义上警觉的威胁检测能力可能需要运用人工智能的力量进行大海捞针。在物联网设备产生海量数据的过程中,当前基于特征的威胁检测技术可能会因为重新收集数据流和实施状态封包检查而被迫达到极限。尽管这些基于特征的检测技术能够应对流量不断攀升,但其检测特征数据库活动的能力仍旧有限。
在工业40时代,结合减少攻击面、安全软件开发生命周期、数据保护、安全和固化设备的硬件与固件以及机器学习,并借助人工智能实时响应威胁,对以具备安全性、警惕性和韧性的方式开发设备至关重要。如果不能应对安全风险,如“震网”和Mirai恶意程序的漏洞攻击,也不能生产固化、安全的物联网设备,则可能导致一种不好的状况:关键基础设施和制造业将经常遭受严重攻击。
攻击不可避免时,保持韧性
恰当利用固化程度很高的目标设备的安全性和警惕性,能够有效震慑绝大部分攻击者。然而,值得注意的是,虽然企业可以减少网络攻击风险,但没有一家企业能够完全避免网络攻击。保持韧性的前提是,接受某一天企业将遭受网络攻击这一事实,而后谨慎行事。
韧性的培养过程包含三个阶段:准备、响应、恢复。
准备。企业应当准备好有效应对各方面事故,明确定义角色、职责与行为。审慎的准备如危机模拟、事故演练和战争演习,能够帮助企业了解差异,并在真实事故发生时采取有效的补救措施。
响应。应仔细规划并对全公司有效告知管理层的响应措施。实施效果不佳的响应方案将扩大事件的影响、延长停产时间、减少收入并损害企业声誉。这些影响所持续的时间将远远长于事故实际持续的时间。
恢复。企业应当认真规划并实施恢复正常运营和限制企业遭受影响所需的措施。应将从事后分析中汲取到的教训用于制定之后的事件响应计划。具备韧性的企业应在迅速恢复运营和安全的同时将事故影响降至最低。在准备应对攻击,了解遭受攻击时的应对之策并快速消除攻击的影响时,企业应全力应对、仔细规划、充分执行。
推动网络公司发展至今日的比特(0和1)让制造业的整个价值链经历了从供应网络到智能工厂再到联网物品的巨大转变。随着联网技术应用的不断普及,网络风险可能增加并发生改变,也有可能在价值链的不同阶段和每一家企业有不同的表现。每家企业应以最能满足其需求的方式适应工业生态圈。
企业不能只用一种简单的解决方法或产品或补丁解决工业40所带来的网络风险和威胁。如今,联网技术为关键商业流程提供支持,但随着这些流程的关联性提高,可能会更容易出现漏洞。因此,企业需要重新思考其业务连续性、灾难恢复力和响应计划,以适应愈加复杂和普遍的网络环境。
法规和行业标准常常是被动的,“合规”通常表示最低安全要求。企业面临着一个特别的挑战——当前所采用的技术并不能完全保证安全,因为干扰者只需找出一个最薄弱的点便能成功入侵企业系统。这项挑战可能还会升级:不断提高的互联性和收集处理实时分析将引入大量需要保护的联网设备和数据。
企业需要采用具备安全性、警惕性和韧性的方法,了解风险,消除威胁:
安全性。采取审慎的、基于风险的方法,明确什么是安全的信息以及如何确保信息安全。贵公司的知识产权是否安全?贵公司的供应链或工业控制系统环境是否容易遭到攻击?
警惕性。持续监控系统、网络、设备、人员和环境,发现可能存在的威胁。需要利用实时威胁情报和人工智能,了解危险行为,并快速识别引进的大量联网设备所带来的威胁。
韧性。随时都可能发生事故。贵公司将会如何应对?多久能恢复正常运营?贵公司将如何快速消除事故影响?
由于企业越来越重视工业40所带来的商业价值,企业将比以往任何时候更需要提出具备安全性、警惕性和韧性的网络风险解决方案。
报告出品方:德勤中国
获取本报告pdf版请登录远瞻智库官网或点击链接:「链接」
1、工业物联网设备基于工业环境制造,要求比消费物联网高。
工业物联网的设备位于工业环境中,或许是在工厂车间内,也有可能在高速运行的铁路系统里,或者在酒店餐厅里,或市政照明系统里面,也有可能在电网里面。相比消费级物联网,工业物联网有着更加严格的要求,包括无时无刻的控制,坚如磐石的安全性能,复杂环境下(无论是极热或极冷,多尘,潮湿,嘈杂,不方便)运行的能力,以及无人自动化的 *** 作能力。不像大多数近期设计的消费者级别的设备,现有的很多工业设备已经运行了很长一段时间,通常以几十年衡量。
2、工业物联网系统必须具有可扩展性。
由于工业物联网应用环境更为复杂,使得工业物联网对扩展性的要求较高,比消费者家庭自动化项目复杂得多。工业物联网系统会产生数十亿个数据点,必须考虑将信息从传感器传输到最终目的地的方式 ——通常是工业控制系统,如SCADA(监控和数据采集) 平台。而消费者物联网应用涉及较少的设备和数据点,如何最大限度地减少中央服务器的吞吐量,并不算什么大问题。
3、工业物联网安全要求更高。
根据Hewlett Packard研究,有70%的物联网设备存在安全漏洞。如攻击者获得了客户财产相关的实时视频资料,那么对智能家居进行黑客攻击可能会对个人隐私造成重大影响,但网络入侵的影响是局部的。而工业物联网中就不同,这些系统通常要将传感器连接到关键的基础设施资源,如发电厂和水资源管理设施,那么其潜在的影响要严重得多。因此,工业物联网必须满足更严苛的网络安全要求,才能获得批准使用。
物联网的缺点是:
1、安全性:物联网系统互联互通,通过网络进行通信。 尽管采取了任何安全措施,系统几乎不提供任何控制,并且可以引发各种网络攻击。
2、隐私:即使没有积极参与用户,物联网系统也能提供最详细的大量个人数据。
3、复杂性:设计,开发,维护和支持大型技术到物联网系统是相当复杂的。
扩展资料
物联网的优点:
1、高效的资源利用:如果了解每个设备的功能和工作方式,会提高资源的有效利用率并监控自然资源。
2、最大限度地减少人力:当物联网设备相互交互并相互通信并完成大量任务时,它们可以最大限度地减少人力。
3、节省时间:因为它减少了人力,所以它绝对节省了时间。 时间是通过物联网平台可以节省的主要因素。
4、增强数据收集:联网并收集相关数据。
5、提高安全性:系统能够将所有这些内容相互连接,那么就可以使系统更安全,更高效。
参考资料来源:百度百科—物联网
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)