2 急需的物联网总体标准
3 传感器标准
4 传感器标准
5 传感器标准进展情况
6 传感器标准体系框架
认知感知层
1.感知层的概念
物联网层次结构分为三层,分别为感知层、网络层、应用层。感知层位于最 底层,它是物联网的核心,其功能为“感知”,即通过传感网络获取环境信息。 感知层是物联网的核心,是信息采集的关键部分。
2.感知层的应用
感知层包括二维码标签及识读器、RFID 标签及读写器、摄像头、GPS 导航、 各种功能传感器、M2M 终端、传感器网关等,主要功能是识别物体、采集信息, 与人体结构中皮肤和五官的作用类似。
3.感知层的关键技术
(1) 传感器:传感器是物联网中获得信息的主要设备,它利用各种机制把被 测量转换为电信号,然后由相应信号处理装置进行处理,并产生响应动作。 (2)RFID:它的全称为 Radio Frequency Identification,即射频识别, 又称为电子标签。RFID 是一种非接触式的自动识别技术,可以通过无线电讯号 识别特定目标并读写相关数据。它主要用来为物联网中的各物品建立唯一的身份 标示。
(3)无线传感网络:它的英文名称为 Wireless Sensor Network,简称 WSN。 传感器网络是一种由传感器节点组成网络,其中每个传感器节点都具有传感器、 微处理器和通信单元。节点间通过通信网络组成传感器网络,共同协作来感知和 采集环境或物体的准确信息。它是目前发展迅速,应用最广的传感器网络。
认知网络层
1 网络层的概念
网络层位于物联网三层结构中的第二层,它功能是通过通信网络进行信息传 输。网络层作为纽带连接着感知层和应用层,它由各种私有网络、互联网、有线 和无线通信网等组成,相当于人的神经中枢系统,负责将感知层获取的信息,安 全可靠地传输到应用层,然后根据不同的应用需求进行信息处理。
2 网络层的组成
物联网网络层包含接入网和传输网,分别实现接入功能和传输功能。传输网 由公网与专网组成,典型传输网络包括电信网、广电网、互联网。接入网包括光 纤接入、无线接入、以太网接入、卫星接入等各类接入方式,实现底层的传感器 网络、RFID 网络最后一公里的接入。
3 网络层的主要技术
物联网用到的通信技术主要包括 3G/4G 通信、IPv6、WI-FI 和 WIMAX、蓝牙、 ZigBee 自组网技术等。正在向更快的传输速率,更宽的传输宽带、更高的频谱 利用率、更智能化的接入和网络管理发展。
认知应用层
1 应用层的概念
应用层位于物联网三层结构中的最顶层,它的功能是通过云计算等计算平台 进行信息处理。应用层与最低端的感知层一起,是物联网的显著特征和核心所在, 应用层可以对感知层采集数据进行计算、处理和知识挖掘,从而实现对物理世界 的实时控制、精确管理和科学决策。
2 应用层的技术
(1)物联网应用:它是用户直接使用的各种应用,通常用应用软件的形式 表现。如智能 *** 控、安防、电力抄表、远程医疗、智能农业等。
(2)物联网中间件:物联网中间件是一种独立的系统软件或服务程序,将 各种可以公用的能力进行统一封装,提供给物联网应用使用。
(3)云计算:它对物联网海量数据的存储和分析。根据服务类型不同将云 计算分为:基础架构即服务(IaaS)、平台即服务(PaaS)、服务和软件即服务(SaaS)。
3 应用层与其他两层的关系 感知层将采集到的数据通过网络层传递给应用层,应用层将接收到的数据进 行分析管理,再将这些数据根据各行各业的应用做出反应处理。例如,在智能电 网中的远程电力抄表应用:安置于用户家中的读表器上显示感知层中的传感器采 集到的数据,通过网络层将数据发送并汇总到发电厂的处理器上,该处理器及其 对应工作就属于应用层,它将完成对用户用电信息的分析,并自动采取相关措施。蓝牙物联网可以说是物联网的一种,物联网讲的是物与物之间的相互连接,通过不同的通讯协议,达到交换信息、 *** 控的目的。而蓝牙技术契合现代物联网组网的需求:低功耗、低成本、传输速度快等。目前国内较为成熟的蓝牙物联网公司是北京的Cassia。物联网现在还只是一个概念阶段,它所使用的是IPV6是16位进制的地址,有效的解决了现有网络中地址不够的问题,我们常用的是IPV4。理论上只要是电器、汽车、自行车、电视,只要能够连接网络的都可以配置IPv6地址。IPV4下只能是一些网络设备可以配置IP地址,比如手机,电脑,高端的电视,交换机,路由器之类的;数据交换方面现在使用较多的就是TCP/IP和UDP协议,QQ是使用UDP的较不安全,像MSN是使用的TCP/IP,比较安全。希望能帮到你
从蓝牙的发展历史中,弄清蓝牙mesh的前世今生?思考灵魂三问:从哪来,到哪去,它要干什么。为接下来学习蓝牙mesh做准备。
为什么命名蓝牙呢?这要源于一个小故事,十世纪的丹麦有一位国王叫Harald Blatand,此人口齿伶俐、善于交际。他将挪威、瑞典和丹麦统一了起来。由于他喜欢吃蓝莓,牙龈常常是蓝色的,因此有蓝牙国王之称。设计人员在确定名称时觉得“蓝牙”这个名字极具表现力,而且Blatand国王的个性很符合这项技术的特征,因此使用了“蓝牙”这个名称。蓝牙标志设计取自 Harald Bluetooth 名字中的“H”和“B”蓝牙标志的来历个字母,用古北欧字母来表示,将这两者结合起来,就成为了蓝牙的logo。
野蛮生长阶段
蓝牙的核心是短距离无线电通讯,它的基础来自于跳频扩频(FHSS)技术,由好莱坞女演员 Hedy Lamarr 和钢琴家 George Antheil 在 1942 年 8 月申请的专利上提出。他们从钢琴的按键数量上得到启发,通过使用 88 种不同载波频率的无线电控制鱼雷,由于传输频率是不断跳变的,因此具有一定的保密能力和抗干扰能力。
起初该项技术并没有引起美国军方的重视,直到 20 世纪 80 年代才被军方用于战场上的无线通讯系统,跳频扩频(FHSS)技术后来在解决包括蓝牙、WiFi、3G 移动通讯系统在无线数据收发问题上发挥着关键作用。
20 世纪 80至 90 年代,正值通讯技术爆发的时代,当时多家科技巨头都在研究一种能够将不同设备无线连接在一起的短距离无线通讯技术。
1994 年,JaapHaartsen 完成了该项技术最核心的基带部分, Sven Mattissson 则完成了无线射频部分,加上链接管理(LMP),这3部分构成了该项技术的核心协议层。这就是最早期的蓝牙技术,只是这个时候还不叫蓝牙。
经过漫长的野蛮生长,各种标准层出不穷,所谓分久必合合久必分。
为了方便,不可能每家都用自己的标准,就像充电数据线,市面上两种充电数据线,苹果和安卓,即便如此,也让人感觉头疼。试下一下,如果一个手机厂商,使用一种充电线,将会是一种什么样的场景。蓝牙mesh的标准,诞生也与蓝牙的诞生方式如出一辙。2017年以前,在国内外也是各种自家的蓝牙mesh标准,直到Sig发布正式版才得以统一。
爱立信在 1994 年创制的方案,该方案旨在研究移动电话和其他配件间进行低功耗、低成本无线通信连接的方法。发明者希望为设备间的无线通讯创造一组统一规则(标准化协议),以解决用户间互不兼容的移动电子设备的通信问题,用于替代 RS-232 串口通讯标准。
1996 年12 月,Ericsson,Nokia,Intel,Toshiba 和 IBM决定成立一个特定兴趣小组(SpecialInterestGroup)来统一和维护该项无线通讯技术标准,以便使其能够成为未来的无线通信标准。经过讨论,Intel 负责半导体芯片和传输软件的开发,爱立信负责无线射频和移动电话软件的开发,IBM和东芝负责笔记本电脑接口规格的开发。
1998 年 5 月 20 日,爱立信联合 IBM、英特尔、诺基亚及东芝 5 家著名厂商成立 “特别兴趣小组”(Special Interest Group,SIG) ,即蓝牙技术联盟的前身,目标是开发一个成本低、效益高、可以在短距离范围内随意无线连接的蓝牙技术标准。当年蓝牙推出 07 规格,支持 Baseband 与 LMP(Link Manager Protocol)通讯协定两部分。
1999 年先后推出 08 版、09 版、10 Draft 版。完成了 SDP(Service Discovery Protocol)协定和 TCS(Telephony Control Specification)协定。
1999 年 7 月 26 日正式公布 10A 版,确定使用 24GHz 频段。和当时流行的红外线技术相比,蓝牙有着更高的传输速度,而且不需要像红外线那样进行接口对接口的连接,所有蓝牙设备基本上只要在有效通讯范围内使用,就可以进行随时连接。 任何角度和方向都可以实现数据的交换,就此拉开了蓝牙技术突飞猛进的序幕。
1999 年下半年,苹果、微软、摩托罗拉、三星、朗讯与蓝牙特别小组的五家公司共同发起成立了蓝牙技术推广组织,从而在全球范围内掀起了一股“蓝牙”热潮。
到 2000 年 4 月,SIG 的成员数已超过 1500,其成长速度超过任何其他的无线联盟。截止目前,共有3万6千多家公司成为特别兴趣小组成员。蓝牙协议最新的版本也到了52,于2020年1月7日发布。暂时还没有蓝牙53要发布的消息。
第一代蓝牙:关于短距离通讯早期的探索
1999 年:蓝牙 10
早期的蓝牙 10 A 和 10B 版存在多个问题,有多家厂商指出他们的产品互不兼容。同时,在两个设备“链接”(Handshaking)的过程中,蓝牙硬件的地址(BD_ADDR)会被发送出去,在协议的层面上不能做到匿名,造成泄漏数据的危险。
因此,当 10 版本推出以后,蓝牙并未立即受到广泛的应用。除了当时对应蓝牙功能的电子设备种类少,蓝牙装置也十分昂贵。
2001 年:蓝牙 11
蓝牙 11 版正式列入 IEEE 802151 标准,该标准定义了物理层(PHY)和媒体访问控制(MAC)规范,用于设备间的无线连接,传输率在748~810kb/s。但因为是早期设计,容易受到同频率之间产品干扰,影响通讯质量。
2003 年:蓝牙 12
蓝牙 12 版同样是只有 748~810kb/s 的传输率,但针对 11 版本暴露出的安全性问题,完善了匿名方式,新增屏蔽设备的硬件地址(BD_ADDR)功能,保护用户免受身份嗅探攻击和跟踪,同时向下兼容 11 版。此外,还增加了四项新功能:
AFH(Adaptive Frequency Hopping)适应性跳频技术,减少了蓝牙产品与其它无线通讯装置之间所产生的干扰问题;
eSCO(Extended Synchronous Connection-Oriented links)延伸同步连结导向信道技术,用于提供 QoS 的音频传输,进一步满足高阶语音与音频产品的需求;
Faster Connection 快速连接功能,可以缩短重新搜索与再连接的时间,使连接过程更为稳定快速;
支持 Stereo 音效的传输要求,但只能以单工方式工作。
第二代蓝牙:发力传输速率的 EDR 时
2004 年:蓝牙 20
蓝牙 20 是 12 版本的改良版,新增的 EDR(Enhanced Data Rate)技术通过提高多任务处理和多种蓝牙设备同时运行的能力,使得蓝牙设备的传输率约在18M/s ~ 21M/s。
蓝牙 20 支持双工模式:可以一边进行语音通讯,一边传输文档/高质素。同时,EDR 技术通过减少工作负载循环来降低功耗,由于带宽的增加,蓝牙 20 增加了连接设备的数量。
应用最为广泛的是蓝牙20 + EDR标准,该标准在2004年已经推出,支持蓝牙20 + EDR 标准的产品也于2006年大量出现。虽蓝牙20 + EDR标准在技术上作了大量的改进,但从1X标准延续下来的配置流程复杂和设备功耗较大的问题依然存在。
蓝牙20可以算得上是生不逢时:虽然蓝牙20已经出现,但大部分的手机内还是集成的蓝牙20以下的发射端,导致了兼容性出现问题,所以,也就没有大规模的普及;另外,这也是蓝牙给大家留下不容易匹配的原因。
2007 年:蓝牙 21
蓝牙 21 新增了 Sniff Subrating 省电功能,将设备间相互确认的讯号发送时间间隔从旧版的 01 秒延长到 05 秒左右,从而让蓝牙芯片的工作负载大幅降低。另外,新增 SSP 简易安全配对功能,改善了蓝牙设备的配对体验,同时提升了使用和安全强度。支持 NFC 近场通信,只要将两个内置有 NFC 芯片的蓝牙设备相互靠近,配对密码将通过 NFC 进行传输,无需手动输入。
2007年8月2日,蓝牙技术联盟正式批准了蓝牙21版规范,即“蓝牙21+EDR”,可供未来的设备自由使用。目前这个版本仍然占据蓝牙市场较大份额,相对20版本主要是提高了待机时间2倍以上,技术标准没有根本性变化。
市面上很多蓝牙音箱,大街小巷里面手机支付后的语音播报,就是使用的这个版本标准。通常称作音频蓝牙,在安卓中支持SSP简单安全配对,在iOS端则需要使用MFI认证。
第三代蓝牙:High Speed,传输速率高达 24Mbps
2009 年:蓝牙 30
2009年4月21日蓝牙技术联盟正式颁布蓝牙核心规范30版。蓝牙 30 新增了可选技术 High Speed,High Speed 可以使蓝牙调用 80211 WiFi 用于实现高速数据传输,传输率高达 24Mbps,是蓝牙 20 的 8 倍,轻松实现录像机至高清电视、PC 至 PMP、UMPC 至打印机之间的资料传输(需要双方都达到此标准才能实现功能)。
蓝牙 30 的核心是 AMP(Generic Alternate MAC/PHY),这是一种全新的交替射频技术,允许蓝牙协议栈针对任一任务动态地选择正确射频。
功耗方面,蓝牙 30 引入了 EPC 增强电源控制技术,再辅以 80211,实际空闲功耗明显降低。
第四代蓝牙:主推” Low Energy”低功耗
2010 年:蓝牙 40
蓝牙40规范于2010年7月7日正式发布,新版本的最大意义在于低功耗,同时加强不同厂商之间的设备兼容性,并且降低延迟,理论最高传输速度依然为24Mbps(即3MB/s),有效覆盖范围扩大到100米(之前的版本为10米)。拥有更快的响应速度,最短可在 3 毫秒内完成连接设置并开始传输数据。更安全的技术,使用 AES-128 CCM 加密算法进行数据包加密和认证。
蓝牙 40 是迄今为止第一个蓝牙综合协议规范,将三种规格集成在一起。其中最重要的变化就是 BLE(Bluetooth Low Energy)低功耗功能,提出了低功耗蓝牙、传统蓝牙和高速蓝牙三种模式:
BLE 前身是 NOKIA 开发的 Wibree 技术,本是作为一项专为移动设备开发的极低功耗的移动无线通信技术,在被 SIG 接纳并规范化之后重命名为 Bluetooth Low Energy(后简称低功耗蓝牙)。这三种协议规范还能够互相组合搭配、从而实现更广泛的应用模式。
蓝牙 40 的芯片模式分为 单模(Single mode) 与双模( Dual mode)。Single mode 只能与蓝牙 40 互相传输无法向下与 30/21/20 版本兼容;Dual mode 可以向下兼容 30/21/20 版本。前者应用于使用纽扣电池的传感器设备,例如对功耗要求较高的心率检测器和温度计;后者应用于传统蓝牙设备,同时兼顾低功耗的需求。
2013 年:蓝牙 41
蓝牙41于2013年12月6日发布,与LTE无线电信号之间如果同时传输数据,那么蓝牙41可以自动协调两者的传输信息,理论上可以减少其它信号对蓝牙41的干扰。改进是提升了连接速度并且更加智能化,比如减少了设备之间重新连接的时间,意味着用户如果走出了蓝牙41的信号范围并且断开连接的时间不算很长,当用户再次回到信号范围中之后设备将自动连接,反应时间要比蓝牙40更短。最后一个改进之处是提高传输效率,如果用户连接的设备非常多,比如连接了多部可穿戴设备,彼此之间的信息都能即时发送到接接收设备上。
蓝牙 41 在传输速度和传输范围上变化很小,但在软件方面有着明显的改进。此次更新目的是为了让 Bluetooth Smart 技术最终成为物联网(Internet of Things)发展的核心动力。
允许开发人员和制造商「自定义」蓝牙 41 设备的重新连接间隔,为开发人员提供了更高的灵活性和掌控度。
支持「云同步」。蓝牙 41 加入了专用的 IPv6 通道,蓝牙 41 设备只需要连接到可以联网的设备(如手机),就可以通过 IPv6 与云端的数据进行同步,满足物联网的应用需求。
支持「扩展设备」与「中心设备」角色互换。支持蓝牙 41 标准的耳机、手表、键鼠,可以不用通过 PC、平板、手机等数据枢纽,实现自主收发数据。例如智能手表和计步器可以绕过智能手机,直接实现对话。
2014 年:蓝牙 42
2014年12月4日,最新的蓝牙42标准颁布。蓝牙42标准的公布,不仅改善了数据传输速度和隐私保护程度,还接入了该设备将可直接通过IPv6和6LoWPAN接入互联网。
首先是速度方面变得更加快速。尽管蓝牙41版本已在之前的基础上提升了不少,但远远不能满足用户的需求,同Wi-Fi相比,显得优势不足。而蓝牙42标准通过蓝牙智能(Bluetooth Smart) 数据包的容量(MTU Size)提高,其可容纳的数据量相当于此前的10倍左右,两部蓝牙设备之间的数据传输速度提高了25倍。
其次,隐私保护程度地加强也获得众多用户的好评。我们知道,蓝牙41以及其之前的版本在隐私安全上存在一定的隐患——连接一次之后便无需再确认便自动连接,容易造成隐私泄露。而在蓝牙42新的标准下,蓝牙信号想要连接或者追踪用户设备必须经过用户许可,否则蓝牙信号将无法连接和追踪用户设备。
当然,最令人期待的还是新版本通过IPv6和6LoWPAN接入互联网的功能。早在蓝牙41版本时,蓝牙技术联盟便已经开始尝试接入,但由于之前版本传输率的限制以及网络芯片的不兼容性,并未完全实现这一功能。而据蓝牙技术联盟称,蓝牙42新标准已可直接通过IPv6和6LoWPAN接入互联网。相信在此基础上,一旦可IPv6和6LoWPAN广泛运用,此功能将会吸引更多的关注。
另外不得不提的是,对较老的蓝牙适配器来说,蓝牙42的部分功能将可通过软件升级的方式获得,但并非所有功能都可获取。蓝牙技术联盟称:“隐私功能或可通过固件升级的方式获得,但要视制造商的安装启用而定。速度提升和数据包扩大的功能则将要求硬件升级才能做到。”
而到目前为止,蓝牙40仍是消费者设备最常用的标准,不过Android Lollipop等移动平台已经开始添加对蓝牙41标准和蓝牙42标准的原生支持。
第五代蓝牙:开启「物联网」时代大门
2016 年:蓝牙 50
美国时间2016年6月16日,蓝牙技术联盟(SIG)在华盛顿正式发布了第五代蓝牙技术(简称蓝牙50)。蓝牙50 在低功耗模式下具备更快更远的传输能力,传输速率是蓝牙42 的两倍(速度上限为 2Mbps),有效传输距离是蓝牙42 的四倍(理论上可达 300 米),数据包容量是蓝牙42 的八倍。
支持室内定位导航功能,结合 WiFi 可以实现精度小于 1 米的室内定位。
另外,蓝牙50还允许无需配对接受信标的数据,比如广告、Beacon、位置信息等。同时蓝牙50标准还针对IoT物联网进行底层优化,更快更省电,力求以更低的功耗和更高的性能为智能家居服务。
2019年,SIG推出了蓝牙51新增寻向功能,将蓝牙定位的精准度提升到厘米级,功耗更低、传输更快、距离更远、定位更精准。
2020年1月,蓝牙技术联盟在拉斯维加斯举办的CES2020上发布了其新一代蓝牙音频技术标准——低功耗音频LE Audio。该方案伴随着TWS耳机的爆发而被受关注。因此,有业内人士认为,LE Audio蓝牙标准将再次对终端应用产生重大影响。
Mesh 网状网络:实现物联网的关键”钥匙“
蓝牙技术联盟于2017年7月19日正式宣布,蓝牙(Bluetooth@)技术开始全面支持Mesh网状网络。Mesh 网状网络是一项独立研发的网络技术,它能够将蓝牙设备作为信号中继站,将数据覆盖到非常大的物理区域,兼容蓝牙 4 和 5 系列的协议。
传统的蓝牙连接是通过一台设备到另一台设备的「配对」实现的,建立「一对一」或「一对多」的微型网络关系。
而 Mesh 网络能够使设备实现「多对多」的关系。Mesh 网络中每个设备节点都能发送和接收信息,只要有一个设备连上网关,信息就能够在节点之间被中继,从而让消息传输至比无线电波正常传输距离更远的位置。
这样,Mesh 网络就可以分布在制造工厂、办公楼、购物中心、商业园区以及更广的场景中,为照明设备、工业自动化设备、安防摄像机、烟雾探测器和环境传感器提供更稳定的控制方案。
物联网:未来蓝牙技术的新主场
自 1998 年来,蓝牙协议已经进行了多次更新,从音频传输、图文传输、视频传输,再到以低功耗为主打的物联网数据传输。一方面维持着蓝牙设备向下兼容性,另一方面蓝牙也正应用于越来越多的物联网设备。
随着 Low Energy 版蓝牙在功耗和传输效率上的不断提升,Classic 版本(经典蓝牙,又或音频蓝牙)自 30 后就更新不大。可以预见,未来蓝牙的主要发力点将集中在物联网,而不仅仅局限于移动设备,而 Mesh 网状网络的加入,使得蓝牙自成 IoT 体系成为可能。
据 SIG 的市场报告预估,到 2018 年底,全球蓝牙设备出货量将多达 40 亿,其中:手机、平板和 PC 今年出货量可达 20 亿,音频和娱乐设备出货量可达 12 亿,全球 86% 出厂的汽车将具备蓝牙功能,智能家居蓝牙设备出货量可达 65 亿,智能建筑、智慧城市、智慧工业等均将成为未来潜力赛道。
随着蓝牙 5 技术的出现和蓝牙 mesh 技术的成熟,大大降低了设备之间的长距离、多设备通讯门槛,为未来的 IoT 带来了更大的想象空间。这项 20 年前问世的技术,未来还会焕发出蓬勃的生命力。
无线通信技术是当今网络通信的基础,按照距离,可以分为近距离无线通信和远距离无线通信。近距离无线通信包括WIFI、蓝牙、ZigBee、Z—Wave、NFC、UWB等。远距离无线通信包括LoRa、NB-IoT等。
相比于其他无线技术:红外、无线24G、WiFi来说,蓝牙具有加密措施完善,传输过程稳定以及兼容设备丰富等诸多优点。尤其是在授权门槛逐渐降低的今天,蓝牙技术开始真正普及到所有的数码设备。不过,蓝牙这一路走来也并非完美,从10到50是一个不平凡的过程。
参考资料:
关键词:物联网(IOT);射频识别(RFID);网络应用;关键技术
中图分类号:TP3934 文献标识码:A 文章编号:2095-1302(2012)08-0078-03
Features and application of Internet of Things
MA Yin
(Jiangsu College of Information Technology, Wuxi 214153, China)
Abstract: A comprehensive analysis of Internet of Things (IOT) is made The origin and basic concepts of IOT is presented firstly The current research on IOT at homeland and abroad and application of IOT are introduced secondly The key techniques of IOT such as the architecture, perception and terminal technology, security of IOT and intelligence are discussed in detail Combined with the development and current industry situation, the suggestions about IOT application and technical improvement are made finally
Keywords: Internet of Things (IOT); Radio Frequency Identification (RFID); Internet application; key technique
0 引 言
随着信息技术的发展,智能化管理与服务也得到快速发展,物联网正是在这样的条件下发展起来的新兴产业。物联网是以感知为核心的物物互联的综合信息系统,其发展将促进传统生产、生活方式向着现代智能化的方式转变,可大大提高生产力和社会运行效率,提升人们的生活质量。物联网是继计算机、互联网之后,世界信息产业的第3次革命。
早在1995年,比尔·盖茨在《未来之路》中就已经提及物物互联的概念,但受限于当时无线网络、硬件及传感设备的发展情况而未引起重视。1998年,美国麻省理工学院(MIT)创造性地提出了当时被称为EPC系统的物联网构想。1999年,在建立物品编码、RFID技术和物联网的基础上,美国Auto-ID中心首先提出“万物皆可通过网络互联”,从此阐明了物联网的基本含义[1]。
物联网的基本思想产生于上世纪末,但近年来,随着信息技术的发展,物联网才真正引起人们的关注。2005年,在信息社会世界峰会(WSIS)上,国际电信联盟(ITU)发布了《ITU互联网报告2005:物联网》[2]。《报告》指出,无所不在的“物联网”通信时代即将来临:通过一些关键技术,用互联网将世界上的物体都连接在一起,使世界万物都可以上网,世界上所有物体都可以通过互联网主动进行信息交换。射频识别技术(RFID)、传感器技术、纳米技术、智能嵌入技术和机器人技术等将得到更加广泛的应用。欧洲智能系统集成技术平台(EPOSS)于2008年在《物联网2020》[3]报告中分析预测了未来物联网的发展主要经历四个阶段:2010年之前广泛应用于物流、零售和制药等领域;2010—2015年实现物与物之间的互联;2015—2020年进入半智能化阶段;2020年之后实现全智能化。目前,物联网的产业发展和应用正在由第一阶段向第二阶段过渡期,物物互联的应用范围不断扩大。RFID 在欧美国家已具有成熟的产业链,这些国家主要将RFID 技术应用于交通、车辆管理、身份识别、生产线自动化控制、仓储管理及物资跟踪等领域。我国目前的物联网虽然只有小规模应用,但物联网的战略性新兴产业地位已经明确。
1 物联网关键技术及特点
物联网是一个基于互联网、传统电信网等信息载体,让所有能够被独立寻址的普通物理对象实现互联互通的网络。它具有普通对象设备化、自治终端互联化和普适服务智能化的重要特征。物联网是一种复杂多样的综合网络系统,根据信息生成、传输、处理和应用过程,可以把物联网分为感知识别层、网络构建层、管理服务层和综合应用层。
11 感知识别层
感知识别层由大量具有感知和识别功能的设备组成,可以部署于世界任何地方、任何环境之中,被感知和识别的对象也不受限制。感知识别技术是物联网的核心技术,是联系物理世界和信息世界的纽带,主要作用是感知和识别物体,采集并捕获信息。关键技术不仅包括射频识别技术、无线传感器等信息自动生成设备,也包括各种智能电子产品用来人工信息生成,主要是感知和识别设备的功耗、物体标签信息的浓缩和写入、物体信息代码的分类匹配等。近年来,各类可联网的电子产品层出不穷,智能手机、个人数字助理(PDA)、多媒体播放器、上网本、笔记本、平板电脑等迅速普及,人们可以随时随地接入互联网,分享信息。信息生成方式的多样化是物联网区别于其他网络的重要特征。
12 网络构建层
网络构建层主要是将感知识别层数据接入互联网。互联网及下一代互联网(包含IPv6技术)是物联网的核心网络。
各种无线网络可提供随时随地的网络接入服务。各种不同类型的无线网络合力提供便捷的网络接入,是实现物物互联的重要基础设施。无线个域网包括蓝牙技术(802151标准)、ZigBee技术(802154标准),无线局域网包括现在广为流行的Wi-Fi技术(80211标准),无线城域网包括现有的WiMAX技术(80216标准),无线广域网包括现有移动通信网络及其演进技术(3G、4G通信技术)。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)