什么是数据新鲜性?为什么物联网感知层数据需要新鲜性保护

什么是数据新鲜性?为什么物联网感知层数据需要新鲜性保护,第1张

1、数据新鲜性是对所接收的历史数据或超出时限的数据进行识别的特性。
2、因为物联网感知层数据要保证接收到数据的时效性,确保接收到的信息是非恶意节点重放的。
3、在物联网环境中,一般情况下,数据将经历感知、传输、处理这一生命周期所以需要新鲜性保护。

物联网架构按层级来划分可分为3个层级: 感知层、传输层、应用层。

首先底层是用来感知数据的感知层,感知层包括传感器等数据采集设备,包括数据接入到网关之前的传感器网络。感知层是物联网发展和应用的基础,RFID技术、传感和控制技术、短距离无线通信技术是感知层涉及的主要技术,其中又包括芯片研发、通信协议研究、RFID材料、智能节电供电等细分技术。

第二层是数据传输的传输层,网络层中的感知数据管理与处理技术是实现以数据为中心的物联网的核心技术,其包括传感网数据的存储、查询、分析、挖掘、理解及基于感知数据决策和行为的理论和技术。云计算平台作为海量感知数据的存储、分析平台,将是物联网网络层的重要组成部分。

最上层是应用层,物联网的应用层利用经过分析处理的感知数据为用户提供丰富的特定服务,可分为监控型(物流监控、污染监控)、查询型(智能检索、远程抄表)、控制型(智能交通、智能家居、路灯控制)、扫描型(手机钱包、高速公路不停车收费)等。应用层是物联网发展的目的,软件开发、智能控制技术将会为用户提供丰富多彩的物联网应用。

如果以人的神经网络做类比,那么人的感觉器官就是物联网的感知层,如眼睛能采集视觉信息,鼻子采集气味信息,嘴巴采集味道信息,而耳朵采集声音信息。这些信息通过神经元传递到大脑中枢,那么这些神经元形成的神经传输通道就相当于物联网中的传输层,它的作用是把信息传送到处理中心。那么人的大脑就相当于应用层了,当它接受到来自眼睛,鼻子、嘴巴、耳朵等信息后,它可以综合去得出一些有用的结论,例如判断现在是否有危险,能够读书看等,这就相当于它应用了来自感知层的信息并产生了价值。

像工业网关在物联网中就是负责传输数据的,爱陆通的工业物联网网关是基于5G/4G、WIFI、虚拟专网等技术开发的。以嵌入式 *** 作系统为软件支撑平台,同时支持1个千兆以太网WAN、4个千兆以太网LAN、1个RS232/RS485(可选)接口和24G/58G WIFI接口,可同时连接串口设备、以太网设备和 WIFI 设备。

物联网可分为三层:网络层、应用层、感知层。

网络层由各种私有网络、互联网、有线和无线通信网、网络管理系统和云计算平台等组成,相当于人的神经中枢和大脑,负责传递和处理感知层获取的信息。

应用层是物联网和用户(包括人、组织和其他系统)的接口,它与行业需求结合,实现物联网的智能应用。

感知层由各种传感器以及传感器网关构成,包括二氧化碳浓度传感器、温度传感器、湿度传感器、二维码标签、RFID标签和读写器、摄像头、GPS等感知终端。

感知层的作用相当于人的眼耳鼻喉和皮肤等神经末梢,它是物联网识别物体、采集信息的来源,其主要功能是识别物体,采集信息。

扩展资料:

相关技术

1、地址资源

物联网的实现需要给每个物体分配唯一的标识或地址。最早的可定址性想法是基于RFID标签和电子产品唯一编码来实现的。

另一个来自语义网的想法是,用现有的命名协议,如统一资源标志符来访问所有物品(不仅限于电子产品,智能设备和带有RFID标签的物品)。这些物品本身不能交谈,但通过这种方式它们可以被其他节点访问,例如一个强大的中央服务器。

2、人工智能

自主控制也并不依赖于网络架构。但目前的研究趋势是将自主控制和物联网结合在一起在未来物联网可能是一个非决定性的、开放的网络,其中自组织的或智能的实体和虚拟物品能够和环境交互并基于它们各自的目的自主运行。

3、架构

在物联网中,一个事件信息很可能不是一个预先被决定的,有确定句法结构的消息,而是一种能够自我表达的内容,例如语义网。

相应地,信息也不必要有着确定的协议来规范所有可能的内容,因为不可能存在一个“终极的规范”能够预测所有的信息内容。

那种自上而下进行的标准化是静态的,无法适应网络动态的演化,因而也是不切实际的。在物联网上的信息应该是能够自我解释的,顺应一些标准,同时也能够演化的。

4、系统

物联网中并不是所有节点都必须运行在全球层面上,比如TCP/IP层。举例来讲,很多末端传感器和执行器没有运行TCP/IP协议栈的能力,取而代之的是它们通过ZigBee、现场总线等方式接入。

这些设备通常也只有有限的地址翻译能力和信息解析能力,为了将这些设备接入物联网,需要某种代理设备和程序实现以下功能:在子网中用“当地语言”与设备通信。

将“当地语言”和上层网络语言互译;补足设备欠缺的接入能力。因此该类代理设备也是物联网硬件的重要组成之一。

参考资料来源:百度百科--物联网

感知层安全威胁
物联网感知层面临的安全威胁主要如下:
    T1 物理攻击:攻击者实施物理破坏使物联网终端无法正常工作,或者盗窃终端设备并通过破解获取用户敏感信息。
    T2 传感设备替换威胁:攻击者非法更换传感器设备,导致数据感知异常,破坏业务正常开展。
    T3 假冒传感节点威胁:攻击者假冒终端节点加入感知网络,上报虚假感知信息,发布虚假指令或者从感知网络中合法终端节点骗取用户信息,影响业务正常开展。
    T4 拦截、篡改、伪造、重放:攻击者对网络中传输的数据和信令进行拦截、篡改、伪造、重放,从而获取用户敏感信息或者导致信息传输错误,业务无法正常开展。
    T5 耗尽攻击:攻击者向物联网终端泛洪发送垃圾信息,耗尽终端电量,使其无法继续工作。
    T6 卡滥用威胁:攻击者将物联网终端的(U)SIM卡拔出并插入其他终端设备滥用(如打电话、发短信等),对网络运营商业务造成不利影响。

感知层由具有感知、识别、控制和执行等能力的多种设备组成,采集物品和周围环境的数据,完成对现实物理世界的认知和识别。感知层感知物理世界信息的两大关键技术是射频识别(Radio Frequency Identification,RFID)技术和无线传感器网络(Wireless Sensor Networ
k,WSN)技术。因此,探讨物联网感知层的数据信息安全,重点在于解决RFID系统和WSN系统的安全问题。

RFID技术是一种通过射频通信实现的非接触式自动识别技术。基于RFID技术的物联网感知层结构如图1所示:每个RFID系统作为一个独立的网络节点通过网关接入到网络层。因此,该系统架构下的信息安全依赖于在于单个RFID系统的信息安全。

物联网指的是:通过扫码设备、射频设备、红外设备、激光扫描设备和定位系统等感知设备按约定的协议把物与物、物与人的连接建立起来的网络系统。
现代物联网从应用方面分为5个层次:
1)支撑层。
2)感知层,我们更多体现感知层的,是一些外在技术,比如激光、红外扫描、触控技术等。
3)传输层,主要有NB-IoT技术、eMTC技术,以及局域网蓝牙、WiFi、PLC逻辑控制器等。
4)平台应用层,主要有物联网 *** 作系统,数据平台、管理系统等。
5)应用层,主要是集中面向数据应用和用户端的设备。

一、感知层——感知信息

作为物联网的核心,承担感知信息作用的传感器,一直是工业领域和信息技术领域发展的重点,传感器不仅感知信号、标识物体,还具有处理控制功能。

目前,在发达国家,其发展已芯片化、集成化和智能化。如最早提出泛在网的加州大学(伯克利分校),已将压力、磁、光等传感单元集成在一个芯片中,而且芯片具备无线接入和自组网功能。

然而,传感器国产化程度较低,其成本、性能和寿命尚不能满足交通运输物联网信息感知的需求。据了解,交通运输部正在和其他部门合作,研制满足交通需求、具有自主知识产权的传感器,并对市场产生了影响。如专业生产感知气象信息设备的维萨拉公司,得知交通运输部正在组织相关研究后,主动要求加入,其产品在国内也应声降价。

二、网络层——传输信息

传感器感知到基础设施和物品信息后,需要通过网络传输到后台进行处理。

目前,传输信息应用的网络先进技术包括第6版互联网协议(IPv6)、新型无线通信网(3G、4G、ZIGBEE等)、自组网技术等,正在向更快的传输速度、更宽的传输带宽、更高的频谱利用率、更智能化的接入和网络管理发展。

据专家介绍,我国在道路建设中,沿路铺设了大量光纤,但利用程度不高。物联网采集到的海量数据,可以使这些道路光纤物尽其用。

三、应用层——处理信息

物联网概念下的信息处理技术有分布式协同处理、云计算、群集智能等。

信息处理的目的是应用,交通物联网的信息处理是为了分析大量数据,挖掘对百姓出行和交通管理有用的信息。此外,还需要建立信息处理和发送机制体制,保证信息发送到需要的人手中。比如,把宏观的路网信息发送给管理决策人员,把局部道路通行情况发送给公众,把某条具体路段的事故信息发送给正行驶在上面的车辆。

物联网架构可分为三层:感知层、网络层和应用层。感知层由各种传感器构成,包括温湿度传感器、二维码标签、RFID标签和读写器、摄像头、红外线、GPS等感知终端。感知层是物联网识别物体、采集信息的来源。网络层由各种网络,包括互联网、广电网、网络管理系统和云计算平台等组成,是整个物联网的中枢,负责传递和处理感知层获取的信息。应用层是物联网和用户的接口,它与行业需求结合,实现物联网的智能应用。其核心技术又可以细分为六层,如右图:和传统的互联网相比,物联网有其鲜明的特征。首先,它是各种感知技术的广泛应用。物联网上部署了海量的多种类型传感器,每个传感器都是一个信息源,不同类别的传感器所捕获的信息内容和信息格式不同。传感器获得的数据具有实时性,按一定的频率周期性的采集环境信息,不断更新数据。其次,它是一种建立在互联网上的泛在网络。物联网技术的重要基础和核心仍旧是互联网,通过各种有线和无线网络与互联网融合,将物体的信息实时准确地传递出去。在物联网上的传感器定时采集的信息需要通过网络传输,由于其数量极其庞大,形成了海量信息,在传输过程中,为了保障数据的正确性和及时性,必须适应各种异构网络和协议。还有,物联网不仅仅提供了传感器的连接,其本身也具有智能处理的能力,能够对物体实施智能控制。物联网将传感器和智能处理相结合,利用云计算、模式识别等各种智能技术,扩充其应用领域。从传感器获得的海量信息中分析、加工和处理出有意义的数据,以适应不同用户的不同需求,发现新的应用领域和应用模式。此外,物联网的精神实质是提供不拘泥于任何场合,任何时间的应用场景与用户的自由互动,它依托云服务平台和互通互联的嵌入式处理软件,弱化技术色彩,强化与用户之间的良性互动,更佳的用户体验,更及时的数据采集和分析建议,更自如的工作和生活,是通往智能生活的物理支撑。这里的“物”要满足以下条件才能够被纳入“物联网”的范围:1、要有数据传输通路;2、要有一定的存储功能;3、要有CPU;4、要有 *** 作系统;5、要有专门的应用程序;6、遵循物联网的通信协议;7、在世界网络中有可被识别的唯一编号。物联网概念这几年可谓是炙手可热,物联网家电也是风生水起,从狭义上讲,物联网家电是指应用了物联网技术的家电产品。从广义上讲,是指能够与互联网联接,通过互联网对其进行控制、管理的家电产品,并且家电产品本身与电网、使用者、处置的物品等能够实现物物相联,通过智慧的方式,达成人们追求的低碳、健康、舒适、便捷的生活方式。物联网是在计算机互联网的基础上,利用RFID、无线数据通信等技术,构造一个覆盖世界上万事万物的“InternetofThings”。在这个网络中,物品(商品)能够彼此进行“交流”,而无需人的干预。其实质是利用射频自动识别(RFID)技术,通过计算机互联网实现物品(商品)的自动识别和信息的互联与共享。而RFID,正是能够让物品“开口说话”的一种技术。在“物联网”的构想中,RFID标签中存储着规范而具有互用性的信息,通过无线数据通信网络把它们自动采集到中央信息系统,实现物品(商品)的识别,进而通过开放性的计算机网络实现信息交换和共享,实现对物品的“透明”管理。物联网的含义从两化融合这个角度分析物联网的涵义:其一:工业化的基础是自动化,自动化领域发展了近百年,理论、实践都已经非常完善了。特别是随着现代大型工业生产自动化的不断兴起和过程控制要求的日益复杂营运而生的DCS控制系统,更是计算机技术,系统控制技术、网络通讯技术和多媒体技术结合的产物。DCS的理念是分散控制,集中管理。虽然自动设备全部联网,并能在控制中心监控信息而通过 *** 作员来集中管理。但 *** 作员的水平决定了整个系统的优化程度。有经验的 *** 作员可以使生产最优,而缺乏经验的 *** 作员只是保证了生产的安全性。是否有法做到分散控制,集中优化管理?需要通过物联网根据所有监控信息,通过分析与优化技术,找到最优的控制方法,是物联网可以带给DCS控制系统的。其二:IT信息发展的前期其信息服务对象主要是人,其主要解决的问题是解决信息孤岛问题。当为人服务的信息孤岛问题解决后,是要在更大范围解决信息孤岛问题。就是要将物与人的信息打通。人获取了信息之后,可以根据信息判断,做出决策,从而触发下一步 *** 作;但由于人存在个体差异,对于同样的信息,不同的人做出的决策是不同的,如何从信息中获得最优的决策?另外物获得了信息是不能做出决策的,如何让物在获得了信息之后具有决策能力?智能分析与优化技术是解决这个问题的一个手段,在获得信息后,依据历史经验以及理论模型,快速做出最优决策。数据的分析与优化技术在两化融合的工业化与信息化方面都有旺盛的需求。物联网智库认为物联网的定义源于IBM的智慧地球方案,十二五规划中九大试点行业全部都是行业的智能化。无论智慧方案,还是智能行业,智能的根本离不开数据分析与优化技术。数据的分析与优化是物联网的关键技术之一,也是未来物联网发挥价值的关键点。物联网就是各行各业的智能化。私有物联网:一般面向单一机构内部提供服务;公有物联网:基于互联网向公众或大型用户群体提供服务;社区物联网:向一个关联的“社区”或机构群体(如一个城市政府下属的各委局:如公安局、交通局、环保局、城管局等)提供服务;混合物联网:是上述的两种或以上的物联网的组合,但后台有统一运维实体;医学物联网:是将物联网技术应用于医疗、健康管理、老年健康照护等领域;建筑物联网:是将物联网技术应用于路灯照明管控、景观照明管控、楼宇照明管控、广场照明管控等领域。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/13414453.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-07-31
下一篇 2023-07-31

发表评论

登录后才能评论

评论列表(0条)

保存