万亿风口!BAT争夺产业互联网,赋能数字化转型

万亿风口!BAT争夺产业互联网,赋能数字化转型,第1张

文/杨剑勇

以NB-IoT和LoRa为核心的低功耗广域网无线连接规模日益扩大,且5G也开启冲刺阶段,大连接将掀起新一轮信息 科技 变革,一个万物互联的时代伴随通信技术发展即将到来,只是,万物互联最终透过云端实现跨行业和跨设备互联互通,各种设备所收集到的数据经过“云”上处理,并利用这些数据将会催生众多新商业模式。

万物互联在于通信技术发展,而万物智能在于数据处理,使得各种设备具有感知能力,云端作为数据集散中心,并利用AI技术,使得万物智能得以实现。

物联网核心在于数据的收集和处理,数以万亿计的传感器被嵌入到各个角落,所收集数据经AI技术进行智能分析,正是这个小小传感器,则驱动着 社会 数字化变革,企业有能力获取无限数据,并从中洞察实现快速创新,驱动产业转型升级,基于海量数据,地区甚至可以洞悉未来商业经济。

各种智能设备和传感器联网后,所产生数据并将厘清,挖掘其价值,从而激发物联网潜力。而云服务商则打通了云、端、边,并通过AI能力助力物联网应用落地,至此,各巨头积极布局,不仅有亚马逊、微软和谷歌等国际巨头,包括BAT今年纷纷调整战略,提升云服务战略,向物联网延伸,以此抢夺这条全新赛道。

在此之前,物联网并没有得到大规模部署,物联网高级顾问杨剑勇支持,受制于传感器的部署,跨品牌、跨平台和跨设备之间互通限制,以及物联网设备碎片化等诸多因素,但一线 科技 巨头进入,并伴随传感器部署规模日益扩大,以及无线通信技术迅猛发展,经过云端把人、机器和数据连接起来,且能为物联网所产生的海量数据提供强大的计算处理的平台,是物联网发展关键所在。

至此,巨头的云服务面向各行业物联网云平台应运而生,继而激活数据价值,以丰富的应用来抢夺主导权,对于他们来说,丰富的物联网应用是争夺市场核心,在其平台比拼的是应用能力,覆盖工业、交通、教育和金融等丰富的应用,这将是争夺物联网这一张船票的核心。

物联网不断推进和部署规模日益扩大,数以百亿设备接入网络,其经济价值超10万亿美元,各种设备利用传感器收集数据,一部分在边缘侧处理,并结合云端大脑,使得设备具有感知能力,仅在工业互联网领域就能激发高达7000亿市场规模。制造业在部署各种传感器后,与云平台结合,并利用人工智能技术对数据分析,赋予工业企业依据数据具有洞察力,把制造业推向数字制造转型。

(一)微软

GE在微软Azure云平台上标准化其Predix解决方案,将Predix产品组合与Azure的本地云功能,包括Azure物联网和Azure数据与分析,进行深度整合。在农业应用方向,布勒集团作为一家食品加工系统企业,将人工智能、智能云以及物联网技术相结合,提高玉米产量,同时最大限度地减少谷物地毒害污染。

微软以云、边缘智能和人工智能构件生态,并已经广泛应用智能硬件和工业制造等各行各业,Azure IoT等服务帮助制造商实施工业40,包括ABB和西门子等工业巨擘都在利用微软Azure开发自己的物联网平台。

(二)腾讯

腾讯云和三一重工打造的工业数据根云平台,三一重工连接了全区超过30万台重型机械设备,能够实时采集近1万个运行参数,共积累1000多亿条工程机械工业大数据,实现了全球范围内工程设备2小时到场,24小时内完工的服务承诺,大大提升了运营的效率,堪称工业智慧生态中的典范。

腾讯云在华星光电应用场景中,通过物联网平台采集数据,利用腾讯优图AI图像检测技术,系统可以724小时不间断进行质检工作,准确率达到了90%以上,远远超过人的水平,整个生产周期缩短了近40%。

产业互联网最初的营收机会还是来自云业务,腾讯的云服务增长非常快,市场份额一直不断提高,并强调,云业务的本质决定了需要大量的投入,包括数据中心和服务器方面的支出,这样才有来自云服务的经常性收入。这是腾讯总裁刘炽平在此前第三季度季报后高管电话电话会议上的讲话。

特别今年新成立云与智慧产业事业群后,腾讯积极拥抱产业互联网,通过整合自身技术和生态资源,腾讯云正构筑全链路的开发者服务体系,帮助人工智能、物联网、小程序、云原生领域开发者快速成长,并促进各行业与互联网深度融合,助推产业互联网升级。

(三)百度

百度以ABC+IoT+智能边缘促进物联网在各垂直领域展开大规模应用,百度云质检云解决方案帮助宝钢建立从连接采集、存储计算到理解决策的感知认知平台,并展示了钢包内衬熔损识别的应用。还有宝钢技术和百度共同打造“智能钢包”应用,通过为钢包部署传感器,实时监控钢包状态,并结合ABC能力打造智能调度的钢包管理系统,降低50%钢包烘烤能耗,平均降低出钢温度10℃,可以节约能源成本70亿元,大约可以节约150亿元。

百度在物联网应用中能大放异彩,得益于2010年开始积极 探索 发展AI技术,应用开始在多个领域开花结果,并以百度云为平台把AI能力分享给 社会 ,从农业到工业,从家庭到 汽车 ,以及翻译、图像识别和信息流等产品和服务,百度AI商业落地走在行业前列。在百度看来,人工智能将推动全 社会 新一轮产业变革,“云”巅之上的企业正向着智能化、AI化升级。

(四)阿里

阿里云在制造业也有不少案例,通过云+AI+IoT能力先后为协鑫集成、天合光能和徐工集团等大型制造企业提供服务。基于阿里云可以轻松安全地将设备连接至云,从边缘设备到云端,从各种设备上收集数据、分析数据,帮助制造业提高运营效率,如协鑫光伏切片生产车间,生产良品率已经提升1个百分点,每年可节省上亿元的生产成本。

全球工业40和智能制造如火如荼进行中,这制造业升级大趋势下,越来越多的制造商开始评估并加大部署物联网,不仅西门子和通用电气等工业巨擘,包括 科技 企业也积极涌入,出击这个新风口,纷纷推出打通数据的工业互联网云平台,透过云端连接设备、服务和数据,并经AI技术处理,可以实时监测工厂运转状态,自主检测生产线上机械异常,以数字化来提升工厂生产率和产品合格率,推动制造业向数字化转型。

作者系物联网高级顾问杨剑勇,网易最佳签约作者,致力于深度解读IoT和AI等前沿 科技 ,基于对未来物联网洞察和对趋势判断,其观点被众多权威媒体和知名企业引用。

文| AI 财经 社 饶翔宇

编辑| 张硕

进入2019年,多家自动驾驶初创公司先后宣布获得融资。值得注意的是,致力于物流行业自动驾驶技术的企业正在获得资本越来越多的认可。

2019年3月1日,专注于无人驾驶货运的飞步 科技 获得来自青松基金、和玉资本的数千万美元 Pre-A 轮投资。

2月13日,专注于研发无人驾驶卡车的创业公司图森未来宣布完成新浪资本领投的9500万美元D轮融资,此轮融资后图森未来的估值超过10亿美元。

2月12日,硅谷自动驾驶公司Nuro宣布完成来自软银愿景基金的 94 亿美元融资。Nuro的首款产品主要用于本地货物配送的自动驾驶服务。

2月8日,自动驾驶初创公司Aurora宣布获得来自亚马逊、红杉资本和壳牌投资部门的超过53亿美元投资。亚马逊的入局被视为Aurora接下来将在自动驾驶物流方面进行发力。

刚刚过去的2018年,多家物流行业的无人驾驶创业公司也在融资方面取得新进展。比如2018年4月,普洛斯和物联网 科技 公司G7、蔚来资本出资组建了无人驾驶新技术公司嬴彻 科技 ,同年10月,为物流行业提供解决方案的G7完成32亿美元融资;2018年11月15日,智加 科技 宣布完成A+轮融资,随后与一汽解放、满帮集团联合宣布,将用3-5年让无人重卡进入干线物流。

如此高密度、高额度的资金进场,正预示着经过了此前乘用车自动驾驶创业公司的融资热后,无人驾驶的风正在物流领域吹起。事实上,相比于乘用车的落地场景,物流行业全封闭或半封闭的行车环境、两点间程式化的用车需求显然更有利于无人驾驶技术的落地。

不过,技术落地是一方面,技术商业化则是另一方面,底层计算平台的成熟度、车规级激光雷达的成本、特定场景算法都将成为后者能否实现的关键。从目前来看, 无人驾驶的落地与商业化就像是一场马拉松,物流领域的玩家已经跑在了相对靠前的位置。

无人驾驶的风向变化

2016年底至2017年初,一批包括禾多 科技 、驭势 科技 、文远知行、Roadstarai、Momenta等在内,专注于乘用车领域的无人驾驶创业公司相继成立。在一到两年时间内,这些公司都纷纷宣布获得多轮融资,最高单笔融资额更是达到上亿美元。

虽然入场较早、融资频频,但是受制于自动驾驶乘用车的应用场景过于复杂,上述创业公司在系统的稳定性和行车的安全性上,还有很多技术性的问题需要解决,比如激光雷达的成本控制和精准度的提高、底层计算平台的成熟度都远非短时间能够解决的。

除此之外,文远知行和Roadstarai两家公司还相继发生了高管内斗、联合创始人因收受回扣遭“解职”的事件,由此暴露出了技术出身的创始团队在公司管理上能力不足的问题,频繁的人事纠纷也进一步阻碍了上述公司的技术落地和商业化进程。

实现乘用车的自动驾驶还有很长的路,但是在物流行业,自动驾驶已经有了商业化试运营案例。

获得软银94亿美元融资后,Nuro创始人朱家俊称,未来,Nuro还将和多家合作伙伴一起推出无人配送服务,包括餐厅、药房、生鲜超市、服装百货、干洗等。

今年2月,零售巨头亚马逊在一个星期内,拿出超过12亿美元分别投资了无人驾驶创业公司Aurora和电动卡车公司Rivian。不仅如此,亚马逊此前还连续三轮投资了被称为“货运版Uber”的卡车物流平台Convoy。

刚刚获得融资的图森未来也公布了公司在无人驾驶物流卡车研发上的最新进展。据介绍,在美国,图森未来无人驾驶卡车日均完成3-5次货物运输,服务13位终端货主客户。在中国,图森未来在中国北方某港口持续试运营超过300天,并将在上海临港地区开展无人驾驶示范运营。

国内的京东、菜鸟、苏宁等巨头也在不断进场。

比如,2016年京东就成立了专门的“X事业”,专注于“互联网+物流”,希望打造着眼未来的智慧仓储物流系统。目前,京东第四代无人驾驶物流车已经在北京的开放道路上,开启了全场景常态化配送。菜鸟ET物流实验室也在云栖大会现场发布第四代新零售物流无人车。苏宁的“卧龙一号”则是国内首个能与电梯进行信息交互的无人车,可以实现从户外到室内的配送。

“无人驾驶已经不是一个讲demo的时间段了,现在更强调落地。在无人驾驶乘用车落地变得遥遥无期的当下,场景相对简单、市场规模超过万亿的物流行业自然有着更多的机会。”无人驾驶领域的创业者张驰(化名)对AI 财经 社表示,以Nuro为例 ,低速物流车相对更安全,落地也会更快。

根据张驰的说法,物流领域最快落地的应该是低速无人配送车和港口、码头、仓库、矿产等封闭场景的无人驾驶卡车;其次,就是负责干线物流运输的自动驾驶;最后,则是 社会 化道路上行驶、场景最复杂的无人驾驶城配物流车。

“事实上,在全封闭的工厂和仓储园区,已经有了无人驾驶的小规模的商业化应用。”钟鼎资本合伙人汤涛对AI 财经 社表示,此前钟鼎投资过一家专注在场内物流领域做无人叉车和无人牵引车的公司,现在该公司已经开始出货并陆续产生营收了。

汤涛对于物流无人驾驶领域这一波投资浪潮并不意外。在他看来,物流行业目前面临着越来越严重的“用工荒”的问题,越来越多的年轻人不再愿意从事枯燥、繁重的运输工作,所以物流行业对于无人驾驶技术的需求要比乘用车市场来得更加强烈。

此外,今年资本市场整体上开始偏谨慎,大家更喜欢投一些盈利时间表更明确的的公司。在自动驾驶的实现方向上,无人物流车可能会更快商业化——一方面因为技术上更容易实现;另一方面从政策角度上来讲,商用车可能会更快跑出来。

投资未来

2019CES前夕,百度利用旗下的自动驾驶车队,从长沙运送了一个包裹到拉斯维加斯。整个过程中,除了跨洋飞行外,在干线物流、支线物流、终端配送的各个环节均是百度无人驾驶车队在工作。这个全球首次完成的自动驾驶物流闭环,让很多人看到了物流行业技术节点的到来。

“从各种条件来看,距离物流无人车的大规模商业化应用还需要较长的一段时间。”张驰表示,目前整个无人驾驶行业主要的3大环节——底层的计算平台、各个场景的算法以及车规级的激光雷达都还未发展成熟,改装一辆无人车的成本可能超过200万元,成本过于昂贵。受此影响,物流领域无人驾驶技术的爆发还需要继续等待。

事实上,除了无人驾驶整个产业链还尚未成熟,国内外的相关政策法规也还未完全放开。

在美国,针对自动驾驶道路测试的管理规范主要由各州自行立法。截至2017 年底,美国有内华达州、加利福尼亚州、佛罗里达州、密歇根州等共 21 个州通过了地方层面的法案,另有 10 个州发布了行政命令,支持自动驾驶 汽车 道路测试,明确申请测试的资格要求及测试过程中的管理要求。

目前,美国自动驾驶 汽车 发展最具代表性的地区是加州,当地开放的政策使得几乎全球所有的自动驾驶公司都会选择在此进行道路测试。根据加州机动车管理局(DMV)公布的数据显示,截至 2018 年 12 月 7 日,共有62家来自不同领域的企业获准在加州测试自动驾驶 汽车 的许可,其中 Waymo是唯一一家获得无驾驶员在车内的自动驾驶测试资格的企业。

在中国,截至 2018 年 12 月 25 日,北京市、上海市、重庆市、杭州市、江苏省共 15 个省市区公布了地方级的测试管理实施细则,准许企业申请自动驾驶 汽车 道路测试的许可。在牌照发放方面,截至 2018 年 12 月 25 日,国内共有 27 家公司获得了共95 张测试牌照。其中,百度分别从北京、平潭、重庆、长沙、天津五个城市共申请获得了 51 张测试牌照。

同时,国内的无人驾驶路测场景也变得更加多元。

2019年1月21日,公安部交通管理科学研究所宣布建成我国首个专门用于自动驾驶测试的封闭高速公路。该封闭高速公路位于江苏省无锡市通锡高速公路(S19)南通方向,全长41km。1月22日,百度旗下的22辆“阿波罗”自动驾驶数据采集及测设车辆,在山西省五盂高速阳泉段进行了相关测试。

高速公路路测场景的开放,对于做干线物流无人驾驶技术研发的G7、智加 科技 以及图森未来来说,显然是一个有力的政策加持。事实上,在政策逐渐放开的同时,物流无人卡车的场景联动也已开始。

2018年11月8日,智加 科技 宣布与满帮集团达成独家战略合作。据统计,中国干线货车700万辆中有520万辆是满帮会员,中国物流企业150万家中有125万家是满帮会员。满帮庞大的交易数据和交通数据将能很好地加速智加 科技 干线物流的无人驾驶技术落地。

“政策的制定是与技术的成熟度是密切相关的。现在各地政府对无人驾驶都是非常支持的,但是路测到真正的商业化还有一个过程,接下来能拿到商业化牌照的,肯定是技术跑在最前面的。”汤涛表示,政策的管制只是暂时的,未来当物流无人车这个大方向上出现成熟、安全的解决方案后,政策自然就会进一步放开。

按照汤涛的说法,所有入局无人驾驶的投资机构,不管是乘用车还是商用车,都是在投未来。

“其实,短期算账是算不过来的。这个核心逻辑就是你信不信自动驾驶的卡车会在未来的物流行业占到一定比例。这类公司是不会有太多家的,最早开始做的,容易收集到更多的corner case,然后就能把系统修改得更稳定,然后成本也会更低。”汤涛表示,在这种情况下,市场上的头部公司就会把主要的份额都吃掉。

至于怎么去制定估值模型,投资的创业公司怎么去盈利,这就是一个时间表的问题了。

人工智能会不会成为影视剧中一样,成为人类的敌人或者人类世界的终结者?答案是不会,至少暂时不会。

目前的人工智能发展阶段距离影视剧中的智能还比较遥远。现在的人工智能是弱人工智能,没有自主欲望需求的阶段,人工智能主要是模仿人类某一方面的技能成为人类工作中的帮手。比如扫地机器人不会有自主意识希望能去舞台表演歌剧。

人工智能是软件工程学科,是进化了的自动化。任何技术的变革,带来的都是人类生活方式的更加便利, 人工智能也是人类手和脑的延伸 ,未来会成为我们很好的工具,扩展我们的现实环境,提升我们和周围环境的沟通。

想象一下,未来可能有《超能陆战队》中的大白那样的机器人提醒你:“最近血压高。”“心率过快,请注意”。是不是对未来的人工智能时代充满期待,希望能更长寿、见证更多新技术的革新呢?

之前就传出机器人可以写稿子当记者了,媒体人一片哀嚎,“要被机器人取代啦”。没错,一些工具能提高效率,但也会让很多人面临失业风险。现在,哪些媒体人的工作已经被取代了?未来,媒体人的哪些工作还会继续被人工智能取代呢?

人工智能与媒体融合时代,称为“智媒时代”,智媒进化专家预测会有这4个方向:

人工智能在媒体行业最主要应用有两个,一个是内容生成,比如读过了很多同质化的内容,就能自动生产同类内容;另外一个应用就是内容分发,基于用户需求不断优化的推荐机制。

目前,国内移动端用户数量巨大,在线时间长,用户平台很大,对内容的需求缺口很大。

再加上现如今很多行业技术达到了,内容没赶上,比如VR。VR现在还在学习如何真正打动人心,因为人类需要故事,这是VR的前景所在。

新技术带来了受众6个方面的变化,从受众变化中可以分析出对于内容有什么需求。也终于明白,今日头条为什么重资支持短视频创作。

可见,不光娱乐资讯需要短视频化,新闻资讯也需要短视频化。新技术在视频领域的应用一个是直播,一个是短视频。

虽然人工智能已经开始进入部分内容生产领域,但在内容生产方面,人与人工智能两者分工不同。人工智能的制作过程中,除了需要技术,还需要媒体人的才华,包括幽默、讲故事的能力。而人工智能的主要工作在于给内容打标签、便于检索,确定分发推荐,掌握反馈信息,不断优化推荐。一方面提升内容制作的效率,一方面更了解受众需求。

很多爆火的网红自媒体都是短视频出身,比如papi酱。

几年前,报纸开始把大版大版的文字改为读者更容易接受的图文形式。微博上一些媒体号也经常用长图文来解读最新政策新闻。但这一形式正被短视频替代,形成新形式-视频资讯。市场对于视频资讯的需求度很高,有很大生产空间。

短视频更容易形成粉丝经济。与短视频资讯相比,以后文字则会偏向更高效的逻辑传递。

一个变化是,今年视频内容付费比例增长,二次元已经开启货币化、人群有了支付能力。

很多自媒体人可能会说,不懂技术如何创作短视频呢?

其实技术方面真的不难,最难的是内容方面。不然李安的新《比利·林恩漫长的中场休息》就不会被口水淹没,说只炫技术而内容故事不佳了。 而做内容正是很多自媒体人已经具备的能力:内容生产能力、讲故事的能力。随趋势而动只需要换一种媒介、换一种展现方式。

只从技术层面讲就没有那么复杂了。大家的智能手机都有了视频拍摄功能,而很多APP或者电脑软件也有视频编辑功能。同时,互联网上有非常多视频素材,推荐一下Wochit,是提供一站式视频素材的获取平台。

不过,如果是VR的内容制作者,还需要考虑一下如果如今的头盔被淘汰,内容是否也要淘汰呢? 内容生产者在跟上技术脚步的同时,还需要考虑能不能在技术革新、设备更迭时,尽量提升自身内容可移植率,虽然那并不容易。

未来会是一个“万物皆媒,人机合一,自我进化”的时代,智媒时代给媒体带来全流程变化,你会不会成为下一个随风而起的网红级别的自媒体人呢?

随着快速无线网络的迅猛发展,万物互联可能逐渐变成了现实,帮助催生出了一个全新的“物联网”产业

高新兴,就是这个产业当中的一家企业,业务集中于“车联网”与“警务执法”。因为经营中面临客户订单数量波动,还因为面临不计其数同业企业的先进产品竞争,它的经营规模与利润,都出现了明显下降;事实上,它的利润表现,其实一直在连年亏损

行业价值

比如地震监测、比如水位监测,……在这类场景,经常需要反复采集数据,准确记录数据,对数据集中加工分析。

如果采用人力来完成,第一费时费力、采集到的数据除了数量稀少之外准确性也经常得不到保证,第二在更多的需要监测的场所,因为自然条件过于恶劣,而根本无法派人前往。

因为在生产领域存在大量这样的需求,还因为作为新兴产业得到政府部门、政策支持,所以能够帮助相关行业实现这类需求的物联网基础设施,就演变成了一个规模日渐庞大起来的行业。

在物联网发展过程中,它所提供出的远距离控制能力,还逐步应用到了更广泛的自动化设施上面,帮助节省了大量人力的同时,也同时能够提升不同场景下数据监测的准确性和效率。

市场形势

与千禧年初中国互联网市场的表现并没有多少不同,物联网当前也正处在这样一个“群雄并起”、让人根本看不清哪一家将更长久发展存在的阶段之中。

如果说行业企业应用,与我们一般用户尚存在一定距离,从而难让我们感知到行业的最新进展的话;那么,几乎直接面向消费领域的各类智能开关,应该说就能让我们一般用户一窥行业成长的端倪

作为末端消费者,我们如今在消费产品的应用当中,经常已经看到各类物联网云平台的宏大气魄。作为研究人员,我们还能看到面向拥有各类消费产品线的企业所提供的为数众多的物联网开发板。但这些物联网公司,能否最终发展壮大、被海量用户最终认可保留下来,最终成长为新产业中的“巨头”,也的确还是个未知数。

展望

就像整车产业的发展,对汽车零部件产业所产生的巨大拉动那样;

毫不怀疑,物联网应用产业的进步,也将会培育出一大批关键配件(从传感器,到5G通信模块,再到物联云)厂商。

并且,我们也能够预料,在各类物联云平台当中,在对行业而言成熟的盈利模式建立起来之后,必将会涌现出不亚于任何一家互联网公司的规模浩大用户众多的大型企业

且让我辈拭目以待。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/13420993.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-08-02
下一篇 2023-08-02

发表评论

登录后才能评论

评论列表(0条)

保存