1 全渠道零售模式:苏宁易购可通过多个渠道进行销售,包括线下门店、线上平台、社交媒体等形式,以满足不同消费者的需求,实现收入的增长。
2 提供增值服务:苏宁易购可通过提供一系列增值服务,例如物流服务、金融服务、增值保险等,以增加用户留存率,并赚取额外利润。
3 电商平台广告:苏宁易购可通过向商家收取广告费用,提高商家在平台内的曝光率,以盈利。
4 物联网+零售模式:苏宁易购可通过整合物联网技术,结合自身的零售经验和技术优势,实现在智能制造、智能物流、智能营销等方面的合作,为合作伙伴提供解决方案,以增加利润来源。
5 会员制度:苏宁易购可以推行会员制度,通过会员卡的销售以及积分兑换等方式,促进用户消费,增加营收,提高用户忠诚度。从支撑到决策:大数据实现企业商业价值
电子商务、社交媒体、移动互联网、物联网的兴起极大地改变了人们生活与工作的方式,它们给世界带来巨大变化的同时,也让一个大数据时代真正地到来。与传统数据相比,大数据主要体现在数据量庞大、数据类型丰富、数据来源广泛三个方面,大数据的这三大特征不仅仅悄然改变着企业IT基础架构,也促使了用户对数据与商业价值之间关系的再思考。
大数据所蕴含的价值
对于当今的企业而言,数据就是一种重要的战略资产,它就像新时代的石油一样,极富开采价值。如果能够看清大数据的价值并且迅速行动起来,那么在未来的商业竞争中占据会占得先机。事实上,美国奥巴马政府已经投资2亿美金启动了“大数据研究和发展计划”,从政府层面鼓励企业收集海量数据、分析萃取信息的能力。英特尔亚太研发有限公司总经理何京翔博士表示:“信息数据就是21世界的石油,石油只有经过开采、提炼最后变成汽油等化学品才能够体现出价值。大数据与石油一样,仅仅存储而不进行分析和处理是体现不出它的价值。”
图一:全球知名调研机构IDC公司 对全球数据增长以及数据类型分布情况的调研与预测。相对于传统的结构化数据,非结构化数据、内容数据的增长迅速,且蕴含了极大的价值。
任何企业都希望能够充分挖掘出像数据这种战略资源的价值,从而做出更为准确的商业决策。过去传统的商业智能局限在分析企业信息系统自身产生出来业务数据,这些数据大部分为数据库等结构化数据,而随着非结构化数据成为企业数据的主力军,传统商业智能的方式方法显然已经落伍。传统商业智能就犹如坐在自己车里,通过后视镜看后面发生的情况;而大数据分析则像是向前看的望远镜,用户通过望远镜能够看到未来可能会发生的情况。之所以会这样,是因为大数据分析是基于构化和非结构化数据的总和,在数据分析的全面性上是传统商业智能所不能比拟的,这意味着通过分析结构能够提供给企业更加全面和准确的商业洞察力。
图二:全球知名咨询机构麦肯锡对于不同行业所产生的数据类型的分析。麦肯锡全球研究所认为几乎所有行业正在大量产生非结构化数据。[page]
大数据打破了企业传统数据的边界,改变了过去商业智能仅仅依靠企业内部业务数据的局面,其背后蕴含的商业价值不可低估,IDC就在其大数据相关报告中着重阐述了大数据的商业价值:行业领导企业与其他企业有着本质的区别,行业领导企业会积极将新的数据类型引入到数据分析之中,为商业决策做出更加准确的判断,那些没引入新的分析技术和新的数据类型的企业在未来是不可能成为行业领导者。这本质上其实是要求企业能够从思维的角度彻底颠覆过去的观点,大数据在未来企业中的角色绝对不是一个支撑者,而是在企业商业决策和商业价值的决策中扮演着重要的作用。
从支撑到决策
传统IT,从服务器、存储、网络、PC这些硬件设施,到CRM、ERP、PLM等应用软件,本质上是在对企业各个业务流程层面起到了支撑作用,虽然传统的商业智能分析能够对于企业的商业决策起到一定的作用,但是传统商业智能分析在当今这个大数据时代已经举步维艰。大数据的价值在于它能够有效的帮助各个行业用户做出更为准确的商业决策,从而实现更大的商业价值,它从诞生开始就是站在决策的角度出发。
图三:全球知名咨询机构麦肯锡对美国不同行业应用大数据技术潜在价值评估。
麦肯锡认为大数据正在为全球创造不可低估的商业价值。首先,大数据能够能够明显提升企业数据的准确性和及时性;此外还能够降低企业的交易摩擦成本;更为关键的是,大数据能够帮助企业分析大量数据而进一步挖掘细分市场的机会,最终能够缩短企业产品研发时间、提升企业在商业模式、产品和服务上的创新力,大幅提升企业的商业决策水平,降低了企业经营的风险。
事实上,大数据离我们并不遥远,现实生活中已经有很多活生生的案例,这些案例充分说明大数据对于未来的商业决策有着不可低估的作用。比如2011年,英国对冲基金Derwent Capital Markets花费4000万美金首次建立了基于社交网络的对冲基金。该基金通过对Twitter的数据内容来感知市场情绪,从而进行投资。美国加州大学河滨分校也在2012年公布了一项通过对Twitter消息进行分析从而预测股票涨跌的研究报告。
图四:英国对冲基金Derwent Capital Markets通过分析Twitter数据来预测股市的波动,该应用为典型的大数据应用,通过实时分析数据来获得更为准确的投资趋势。图中红线代表Tweets中“平静”数值;蓝线表示3天后的道指变化。在这两条线段重合的部分,“平静”指数预测了3天后道指收盘指数,从图中我们可以发现红、蓝两线经常走势相近。[page]
可以说,在IT日益渗透到企业和个人方方面面的今天,大数据将逐渐成为很多行业企业实现商业价值的最佳途径。IDC中国企业级系统与软件研究部高级研究经理周震刚就表示:“毫无疑问,未来几年大数据会逐渐向更多行业发展,除了互联网和电信之外,其他像政府、金融、制造业都会开始有大数据的应用。”当然,可能还有人会质疑大数据的决策效果,但是不可否认的是大数据正在彻底改变商业决策的模式与方法,大数据是IT价值从企业业务支撑到企业决策转变的最好体现。
图五:美国德克萨斯大学《measuring the business impacts of effective data》报告,该报告认为数据使用率提升10%对行业人均产出的平均提升幅度有着重要影响,最为明显的就是零售行业,在零售行业数据使用率提升10%就能够使得人均产出提升49%,效果异常明显。
另外值得关注的是,企业的商业决策带有很强烈的行业特性,不同行业的企业对于大数据分析的需求并不相同,甚至由于不同行业的关系,这种需求可能是千差万别。这也就要求大数据解决方案不仅仅包括良好的数据分析能力,也需要包含很多行业的知识。IDC中国企业级系统与软件研究部高级研究经理周震刚就表示:“从传统概念来讲,大数据非常复杂,无法形成打包好的分析应用解决方案。不过在未来几年中,某个行业的应用会形成一个共性,厂商们会基于这个共性打包出一些大数据的解决方案推向这些行业用户。另外,会有更多的行业ISV会加入到大数据平台,基于这个大数据平台来开发应用。”从本质上来看,企业用户在商业决策中需要的是一个包含了灵活可靠的基础架构、功能强大的数据分析能力与经验丰富的行业分析能力的大数据综合性解决方案,仅仅依靠几套开源软件和设备是不能满足企业在商业决策上的长久需求,英特尔亚太研发有限公司总经理何京翔博士就表示:“大数据不仅仅是一个技术问题,英特尔认为大数据需要一个全面的大数据解决方案。英特尔在提供优秀的基础架构同时,还重点将Hadoop软件平台进行优化并提供软件服务,更加重要的是会针对分析工具和用户界面进行不同行业解决方案的定制。此外,英特尔也和众多行业ISV进行多角度、多方位的合作,从而构建出一个完善的大数据解决方案。”
从商业支撑到商业决策,大数据的商业魅力正在逐渐显现。在这个商业迅速信息化、社交化、移动化的时代,大数据必然会成为大部分行业用户商业价值实现的最佳捷径,我们需要做的就是认清本质、转变思路、未雨绸缪、运筹帷幄,在大数据时代中抓住无限商机。
大数据技术与应用专业课程:C语言程序设计,计算机网络,数据结构与算法,MySQL数据库,JAVA程序设计,Linux *** 作系统,Hadoop平台部署与运维,数据仓库与数据挖掘技术,Python程序设计,数据可视化技术与开发,深度学习与人工智能,Spark技术等课程。
大数据大专生出路
对于专科生而言,开发和研发岗位很难,更多的会去做底层环境搭建维护,项目实施,图表开发等配置性质工作,拓展渠道在于是否可以懂得业务,从数据人员到数据分析师一个转化。和业务对接最多的就是企业中表哥表姐,或者软件公司做BI开发的人员。做这块工作何尝不是专科生一个不错的选择。
大专生学大数据好工作吗看情况。大数据技术及应用或相关专业就业前景广阔。原因是近年来互联网行业发展迅速,移动互联网、电子商务、物联网、社交媒体的快速发展推动我们快速进入大数据时代。
大数据技术及应用(云计算、大数据)
就业方向:毕业后可在事业单位信息产业、科技、信息部门等相关企业从事云计算和大数据平台的设计、管理和开发工作。
有网络工程师、系统运维工程师、信息安全工程师、云计算与大数据工程师、大数据分析师、大数据开发工程师、IT项目经理等。
大数据分析的数据来源有很多种,包括公司或者机构的内部来源和外部来源。分为以下几类:1)交易数据。包括POS机数据、xyk刷卡数据、电子商务数据、互联网点击数据、“企业资源规划”(ERP)系统数据、销售系统数据、客户关系管理(CRM)系统数据、公司的生产数据、库存数据、订单数据、供应链数据等。
2)移动通信数据。能够上网的智能手机等移动设备越来越普遍。移动通信设备记录的数据量和数据的立体完整度,常常优于各家互联网公司掌握的数据。移动设备上的软件能够追踪和沟通无数事件,从运用软件储存的交易数据(如搜索产品的记录事件)到个人信息资料或状态报告事件(如地点变更即报告一个新的地理编码)等。
3)人为数据。人为数据包括电子邮件、文档、、音频、视频,以及通过微信、博客、推特、维基、脸书、Linkedin等社交媒体产生的数据流。这些数据大多数为非结构性数据,需要用文本分析功能进行分析。
4)机器和传感器数据。来自感应器、量表和其他设施的数据、定位/GPS系统数据等。这包括功能设备会创建或生成的数据,例如智能温度控制器、智能电表、工厂机器和连接互联网的家用电器的数据。来自新兴的物联网(Io T)的数据是机器和传感器所产生的数据的例子之一。来自物联网的数据可以用于构建分析模型,连续监测预测性行为(如当传感器值表示有问题时进行识别),提供规定的指令(如警示技术人员在真正出问题之前检查设备)等。
5)互联网上的“开放数据”来源,如政府机构,非营利组织和企业免费提供的数据。工业物联网是指在工业中应用物联网技术,实现工业特有的价值增值的技术模式。
所有物联网都是为了实现万物互联,特别是物与物的互联,但是工业物联网又有其专有属性,原因是与工业物联网相对的消费物联网本身的联网密度、联网的实时性、联网物的异质化要求都不高,而工业物联网的要求主要表现在联网密度、联网实时性及联网异质化三个方面。
思考所有问题都需要从宏观到微观的细化过程,工业物联网也不能例外,我认为对工业物联网进行深度思考,需要从以下五个维度进行分析,否则将会要么带来一叶障目,要么带来好高骛远。
首先需要我们思考的问题是,工业物联网的价值、意义和目的是什么;第二个是工业物联网需要连什么的问题,这是一个范围的概念;第三个需要我们思考的是连入物联网的物的层级问题,也就是深度的问题;第四个需要我们思考的是实现物联的价值成本分析;第五个需要我们思考的是如何建设工业物联网。
互联网实现了计算机与计算机的连接,或者说实现了人与人的连接,这个连接带来了人的交互的便利,在这个基础上涌现出很多全新的、颠覆性的商业模式,例如,电子商务、即时通讯,社交媒体等等;而物联网将实现人与物、物与物的连接,同样我们也期望带来全新的、颠覆性的商业模式,甚至更进一步,期望带来人类生活、生产方式的全新的颠覆性的模式。
作为物联网主战场的工业物联网,人们对其的期许是在工业设计、制造、流通环节带来革命性的变革,为传统工业注入新的活力,提供新的势能,驱动工业在更高维度上发展、创新、乃至变革。随着计算、存储能力的提升,特别是大数据、人工智能的发展,任何行业对数据获取手段都提出了前所未有的要求。对数据获取手段的要求主要表现在四个特征,第一是高效性;第二是准确性;第三是实时性;第四是经济型;在当前技术能力下,能够同时满足这四个特征的就是工业物联网,首先,芯片技术已经发展到一个具有较强计算能力的MCU在美元以下,RFID芯片价格甚至已经到美分这个量级,使得工业物联网有了物质基础,同时满足了经济性要求;近三十年的通讯技术的发展,从模拟到数字,从简单调制到复杂调制技术的商用化,使无线通讯可以很廉价地覆盖几百米甚至数公里的范围,满足了数据获取的密集部署要求,同时由于工业物联网的永久在线的特征,使工业物联网满足数据获取的高效性、实时性要求;微电子技术在近年也发生了突飞猛进的发展,不论在价格上还是在进度上都有了长足的突破,满足了数据获取的准确性。
总而言之,工业物联网的出现是在以下几个条件成熟时涌现出来的不可逆转的趋势:
1、快速变化的市场需要数据支撑,产生了市场对数据获取的急切要求;
2、MCU的发展使得计算能力快速提升;
3、以调制技术为核心的通讯技术发展为联网建立的管道基础;
4、传感技术,特别是以MEMS为标志的微电子技术的发展给予感知世界提供的保证;
工业物联网不是规划出来的,是各种技术与需求发展进化的产物,是生活、生产、经济发展到一定高度后自然而然出现的,是在需求的驱动下,众多行业创新带了的自然产物。
通过工业物联网,可以把传统经济中不可数字化之物数字化,可以把传统不可数字化之行为数字化,可以把传统不可能变为可能,甚至变为容易获得、解决的方案。
这个问题是第一个问题的延续,如果不考虑经济性,那么我们可以说工业物联网连接一切可连接之物,但是,当我们在做一个务实的、有价值的方案时就不能不考虑可行性及经济性,那么工业物联网连什么呢?我们认为这是一个从哪里来到哪里去的问题,我们通过上面对价值、意义和目的分析可知,我们应该从目的反推,一切从目的出发,时刻盯紧企业需要弥补的最关键环节,例如,如果对量化OEE有需求,那么我们就要连接设备状态;如果要减少在制品,那么我们就要对在制品进行追踪;如果能源消耗对企业是重中之重,那么我们就要把能效物联化,等等。世界上不存在同样的两片树叶,同样地,世界上也不存在同样的两个企业,我们只能对企业本身进行深入分析,紧紧聚焦于企业价值,在保证经济性的基础上,确定工业物联网的实施范围方案。联网范围一个核心点是连入物的属性,也就是说我们通过分析连入物的属性与企业建设工业物联网目标的耦合度,决定需要实施工业物联网的广度。
通过分析工业物联网连什么后,我们得到了连入物的内容,接下来需要我们决定是对每个/每类连入物我们该数字化哪些属性,这里遇到工业物联网特有的一个障碍,需要连入工业物联网的物的可连通性问题, 特别是在设备互联时,可连通性表现的特别突出,例如,有的设备具有开放的通讯协议和可用的通讯接口,有的设备不开放协议等等,那么可连通性就是对方案供应商的很大的考验,我们的经验是有四种方案可供选择:
1、使用设备开放的协议;
2、使用设备自带的传感器;
3、添加新的传感器;
4、改变观察侧面及维度,使用全新的采集模式;
其中第四条,改变观察的侧面和维度,使用全新的连接方式是使用第一性原理,避开设备不开放协议或接口的阻碍,避开被设备供应商牵着鼻子走的方向,从本质上获取数据。例如:通过能效检测获得设备的使用状态,通过震动传感分析设备部件的故障、甚至是转速等,只要通过第一性原理从你需要的信息入手,而不是被动地从设备可以提供的数据入手来提供物联解决方案的方式。直接把我们需要的信息做为目标,观察除了直接连接设备外,我们还能够如何获得需要的信息,因为只有我们获得的数据能够与设备提供的数据在信息上能够“同构”即可。例如,我们可以在我们的物联设备上安装一个震动传感器,从传感器获得的数据中,我们即得到了设备是否开机,又得到了是否启动工作,同时还得到设备的转速。如果不用第一性原理,而是硬要跟设备互联,那至少要采集三个数据,并且未必设备能够给你。这就是典型的边缘计算的案例,边缘计算的计算规则一定要具有定制能力,可以说边缘计算一定是一个知识容器,可以方便地把客户、厂家,甚至是第三方的知识融入的容器,我们开发的支持脚本的设备已经具有了初步的边缘计算的功能,我们需要在这个方面继续加大支持力度。
所以,通过分析企业价值和物的可连通性,我们就可以明确定义需要连入物层级,也就明确了连入物的连接深度;
在连入物联网的物的层级中一个重要的概念是管理粒度,对于制造业来说,连入物的管理粒度大概分为如下几个层级:
1、传感级;
2、设备级;
3、产线级;
4、车间级;
5、企业级;
也就是说我们要在经济性可行的前提下定义数据获取的粒度。理论上讲,细粒度一定比粗粒度更好,更有价值,但是当加入成本分析后,可能并不一定粒度越细越好,需要按照各种制约因素找到一个平衡点。
价值成本永远在企业行为中持有权值最高的赞同或者否决的一票,通过前三项分析,我们仅剩下最后一个问题没有解决,这也是关乎价值成本的关键:管理粒度问题,我们到底需要在多细的粒度下进行管理?这带来了一个哲学问题:世界是不是需要黑盒子。什么意思呢?当我们确定一个管理粒度后,比管理粒度更细的信息将被隐藏在黑盒子中,这个黑盒子将成为我们分析深度或者认知深度的制约因素和约束条件。我们可以通过价值成本分析来找到这个平衡点,从而明确黑盒子的大小,并最终确定连入工业物联网的物的特性。
我们的期许是工业物联网建设的价值观,其他一起都是方法论。首先,我们在规划物联网时要本着既要有高瞻远瞩,又要有务实可行的精神。在思考黑盒子的大小时我们要高瞻远瞩,设计方案尽可能地以黑盒子尽量小为目标,而实施方案则按照价值成本分析选择合适的黑盒子的大小,也就是选择合适的管理粒度,从而保证投入收益的平衡,甚至我们可以把黑盒子尽量定义的大些,用以验证工业物联网的可行性,最大可能地降低工业物联网实施的风险。
总之,我们应该从以几个方案来确定工业物联网的建设原则:
1、期望获得什么结果?
2、期望用什么方式获得想要的结果?
3、需要信息基础提供什么?
4、工业物联网是否能够获得这些信息?
5、工业物联网如何获得这些信息?
6、获得这些信息的性价比如何?
7、回归分析,评估预期结果是否符合经济利益?
8、落地实施。
2023年,教育部再次公布关于2023年度普通高等学校本科专业备案和审批结果,两百多所高校新增备案“数据科学与大数据技术”专业。这是从16年教育部公布15年新增备案开始,大数据类专业持续新增获批的第四年,截至目前,全国已有四百多所高校获批并争相开设大数据类专业,其次是人工智能类专业:机器人工程、智能科学与技术、智能制造工程,及网络空间安全等专业。
市场对人才需求迫切
大数据与人工智能不仅在互联网公司的战略规划中频繁出现,同时在我国国务院和其他国家的政府报告中多次被提及。大数据、物联网、人工智能、网络安全等新领域人才虽是刚性需求,但供给仍严重不足。
据职业社交平台LinkedIn发布的《2023年中国互联网最热职位人才报告》显示,研发工程师、产品经理、人力资源、市场营销、运营、数据分析是当下中国互联网行业需求最旺盛的六类人才职位。其中研发工程师需求量最大,而数据分析人才最为稀缺。
根据中国商业联合会数据分析专业委员会统计,未来中国基础性数据分析人才缺口将达到1400万,而在BAT企业招聘的职位里,60%以上都在招大数据人才。
大数据的应用范围广泛,将近50%的企业将大数据运用在企业工商信息管理方面,社会保障占据339%、劳动就业占据327%、市政管理占据294%、教育科研方面分别占据29%,发展形势一片大好,在各行业都有应用。
大数据行业方向学习
一
数据存储和管理
大数据都是从数据存储开始。这意味着从大数据框架Hadoop开始。它是由Apache Foundation开发的开源软件框架,用在计算机集群上分布式存储非常大的数据集。
显然,存储对于大数据所需的大量信息至关重要。但更重要的是,需要有一种方式来将所有这些数据集中到某种形成/管理结构中,以产生洞察力。因此,大数据存储和管理是真正的基础,而没有这样的分析平台是行不通的。在某些情况下,这些解决方案包括员工培训。
二
数据清理
在企业真正处理大量数据以获取洞察信息之前,先需要对其进行清理、转换并将其转变为可远程检索的内容。大数据往往是非结构化和无组织的,因此需要进行某种清理或转换。
在这个时代,数据的清理变得更加必要,因为数据可以来自任何地方:移动网络、物联网、社交媒体。并不是所有这些数据都容易被“清理”,以产生其见解,因此一个良好的数据清理工具可以改变所有的差异。事实上,在未来的几年中,将有效清理的数据视为是一种可接受的大数据系统与真正出色的数据系统之间的竞争优势。
三
数据挖掘
一旦数据被清理并准备好进行检查,就可以经由数据挖掘开始搜索过程。这就是企业进行实际发现、决策和预测的过程。
数据挖掘在很多方面都是大数据流程的真正核心。数据挖掘解决方案通常非常复杂,但力求提供一个令人关注和用户友好的用户界面,这说起来容易做起来难。数据挖掘工具面临的另一个挑战是:它们的确需要工作人员开发查询,所以数据挖掘工具的能力并不比使用它的专业人员强。
四
数据可视化
数据可视化是企业的数据以可读的格式显示的方式。这是企业查看图表和图形以及将数据放入透视图中的方法。
数据的可视化与科学一样,是一种艺术形式。而大数据公司将拥有越来越多的数据科学家和高级管理人员,很重要的一点是可以为员工提供更加广泛的可视化服务。销售代表、IT支持、中层管理等这些团队中的每一个成员都需要理解它,因此重点在于可用性。但是,易于阅读的可视化有时与深度特征集的读取不一致,这成为了数据可视化工具的一个主要挑战。
大数据的就业前景了解
由于大数据所创造的价值非常大,也将让企业更加愿意为相关的人才付出更高的薪资。目前,具备一年工作经验的从业者月薪已经达到15k左右。具备3-5年经验的从业者年薪已经达到30-50万左右。大数据的就业前景非常值得期待,入行大数据也需要趁早。
大数据的就业方向有许多,主要可分为三大类:
1大数据开发方向:大数据工程师,大数据开发工程师,大数据维护工程师,大数据研发工程师,大数据架构师等
2数据挖掘,数据分析和机器学习方向:大数据分析师,大数据高级工程师,大数据分析师专家,大数据挖掘师,大数据算法师等
3大数据运维和云计算方向:大数据运维工程师等
当下正是金九银十的求职季,作为高薪的大数据行业,以下就业岗位与相对薪酬可作为有意愿从事大数据行业人员的从业参考。
1、ETL研发
ETL,是英文Extract-Transform-Load的缩写,用来描述将数据从来源端经过萃取(extract)、转置(transform)、加载(load)至目的端的过程。ETL一词较常用在数据仓库,但其对象并不限于数据仓库。
所需技能:ETL工程师是从事系统编程、数据库编程与设计,要掌握各种常用的编程语言的专业技术人员。因此从事ETL研发首先一定要具有优秀的编程能力,其次要熟悉主流数据库技术,如oracle、Sql server、PostgeSQL等。并且得会数据etl开发工具,如Datastage,Congos,Kettle等。
2、Hadoop开发
Hadoop的核心是HDFS和MapReduceHDFS提供了海量数据的存储,MapReduce提供了对数据的计算。Hadoop开发人员利用Hadoop来对数据进行必要的处理。
所需技能:
回答于 2023-04-03
详情该链接由问题回答方推荐欢迎分享,转载请注明来源:内存溢出
评论列表(0条)