“农业物联网”就是物联网技术在农业生产、经营、管理和服务中的具体应用。按照物联网技术架构,农业物联网仍然通过“感知—传输—应用”的途径来实现对农业的应用。“感知”就是运用各类传感器,如温湿度传感器、光照强度传感器、PH值传感器、CO2传感器等设备,实时地采集大田种植、设施园艺、畜禽养殖、水产养殖和农产品运输等环境中的温度、湿度、PH值、光照强度、土壤养分、CO2浓度等物理量参数信息;“传输”就是建立数据传输和转换方法,通过局部的无线网络、互联网、移动通信网等各种通信网络交互传递,实现农业生产环境信息的有效传输;“应用”就是将获取的大量农业信息进行融合、处理,使技术人员对多个大棚的环境进行监测控制和智能管理,保证农作物有一个良好的、适宜的生长环境,达到增产、改善品质、调节生长周期、提高经济效益的目的,进而实现农业生产集约、高产、优质、高效、生态和安全的目标。
蔬菜大棚、温室大棚主要用于不适合蔬菜生长的季节,模拟蔬菜生长的自然条件,提供蔬菜适合生长的环境,而这个环境的实现不能凭感觉,需要引入农业物联网温室环境监控技术解决蔬菜生长环境的可控性,达到提高蔬菜生产效益的目的。
一、蔬菜温室大棚控制系统构建:
一个完整的蔬菜温室大棚自动控制系统包括数据采集、数据传输、数据分析和生产 *** 作系统等部分,每个部分在蔬菜生产中具有不同的功能,这些功能组合起来完成蔬菜生产的全过程。
二、蔬菜温室大棚物联网环境自动控制系统主要包括以下几个分系统部分:
1数据采集系统:
数据采集系统由无线传感器、供电电源或者蓄电池等组成;现场的监测元件包括温湿度、CO2浓度、土壤温湿度、土壤养分等监测元件。数据采集系统主要负责温室大棚内部的光照、温度、湿度和土壤含水量以及视频等数据的采集和控制。
2数据传输系统:
数据传输系统由数据采集传感器,包括温度传感器、湿度传感器、光照强度传感器、光合有效辐射传感器、土壤温湿度传感器、CO2传感器、风向传感器等组成。传输方式:外部网络以基于IP网络技术和GPRS通信网络为基础进行传输;内部网络则采用短距离、低功率的ZigBee无线通信技术。基于ZigBee的无线传输模式中,传感器采集的数据通过ZigBee发送模块传送到中心节点上,同时,用户终端和一体化控制器间传送的控制指令也传送到中心节点上,中心节点再经过边缘网关将传感器数据、控制指令发送到上位机的业务平台。技术人员可以通过有线网络/无线网络访问上位机系统业务平台,实时监测大棚现场的传感器参数,控制大棚现场的相关设备。
3数据分析系统:
数据分析及显示部分包括电脑、软件、无线接收模块、报警系统,依据不同的环境、作物、生长期,实施不同的控制方案。
4实地环境 *** 控系统:
该分系统包括的灌溉控制系统可进行滴浇灌和微喷雾系统的控制,实现远程自动灌溉;土壤环境监测系统则利用土壤水分传感器、土壤湿度传感器等来实时获取土壤水分、湿度等数据,为灌溉控制系统和温湿度控制系统提供环境信息;温湿度监控系统可利用高精度传感器来采集农作物的生长环境信息,设定环境指标参数,当环境指标超出参数范围时,可自动启动风机降温系统、水暖加温系统、空气内循环系统等,以进行环境温湿度的调节。
利用农贸行业物联网建设的蔬菜温室大棚,能为温室大棚种植提供有效的控制蔬菜的生长环境的先进技术,使蔬菜获得适宜的生长环境,增加产量,以实现跨季节的蔬菜培育。(一)加快培育新型融合主体
强化农村合作社和家庭农场的基础性作用,培育新型农村产业融合主体。2014年,国家发改委、农业部等九部门联合发文《关于引导和促进农民合作社规范化发展的意见》,鼓励将分散的农户组织起来,引进专业人才,根据“自愿加入、民主管理、资本报酬有限”基本原则,提高合作社经营管理水平。各级政府应加强对农民合作社政策扶持和指导服务,使之成为农业进入市场的基本主体,成为发展农村经济的新型实体和创新农村社会管理的有效载体。
(二)加快科技创新,从本质上改变农业发展模式
提高农业供给质量和效益,使农产品供给数量充足,农产品质量契合消费者需求。利用信息技术改造传统农业,在农机调度、农情监测、精准农业、农产品质量追溯、农业资源管理等方面,加快农业物联网和智能装备等在农业产前产中产后各环节的应用。利用物联网、云计算和3G等现代信息技术发展精准施肥、智能灌溉等。广泛运用包括植物保护、栽培管理专家系统、农产品储存保鲜、加工运输专家系统在内的众多新型农业专家系统。
(三)加强农业信息化平台建设
加快建设公共服务平台,提供乡村旅游、电子商务、农业物联网、价格信息等服务,实现农业公共信息资源的跨部门、跨地区、跨行业互联互通共享。一、二、三产业融合需要一定的技术基础及信息基础设施,政府应采取措施加强宏观指导,为农业信息化奠定坚实基础,包括提高网络宽度及速度,增加网络容量,建立基础性和公益性资源数据库。依托“互联网+”发展各种专业化社会服务,促进农业生产管理更加精准高效。在广大农村,利用广播电视覆盖广,以及在物联网建设中有着网络宽带和传输质量稳定的优势,建成覆盖农村的优质、宽带信息网络,以此实现农业信息化的基础工程。
(四)挖掘农业地域资源,壮大新产业、新业态
因地制宜发掘辽宁省农业地域资源,把农业生产与农产品加工流通和农业休闲旅游融合起来,更好地满足全社会对农业多样化的需求。发展高品质农产品加工业,提升农产品加工园区集聚功能,培育农产品精深加工龙头企业,加快农产品现代流通体系建设。依托农业资源发展旅游和健康养老产业,将发展农业新型业态和扩大高附加值农产品出口等作为重点予以实施。加快建设一批规模大、竞争力强、特色鲜明、效益好、引领示范作用突出的高标准农产品加工集聚区,推动农产品加工业结构优化升级。
(五)加大对产业融合发展的政策支持
加快推进农村集体资产产权制度改革,制定相应的法律物联网农业智能测控系统所技术特点:
(1)监控功能系统:根据无线网络获取的植物生长环境信息,如监测土壤水分、土壤温度、空气温度、空气湿度、光照强度、植物养分含量等参数。其它参数也可以选配,如土壤中的PH值、电导率等等。信息收集、负责接收无线传感汇聚节点发来的数据、存储、显示和数据管理,实现所有基地测试点信息的获取、管理、动态显示和分析处理以直观的图表和曲线的方式显示给用户,并根据以上各类信息的反馈对农业园区进行自动灌溉、自动降温、自动卷模、自动进行液体肥料施肥、自动喷药等自动控制。
(2)监测功能系统:在农业园区内实现自动信息检测与控制,通过配备无线传感节点,太阳能供电系统、信息采集和信息路由设备、配备无线传感传输系统,每个基点配置无线传感节点,每个无线传感节点可监测土壤水分、土壤温度、空气温度、空气湿度、光照强度、植物养分含量等参数。其它参数也可以选配,如土壤中的PH值、电导率等等。信息收集、负责接收无线传感汇聚节点发来的数据、存储、显示和数据管理,实现所有基地测试点信息的获取、管理、动态显示和分析处理以直观的图表和曲线的方式显示给用户,并根据种植作物的需求提供各种声光报警信息和短信报警信息。
(3)实时图像与视频监控功能:农业物联网的基本概念是实现农业上作物与环境、土壤及肥力间的物物相联的关系网络,通过多维信息与多层次处理实现农作物的最佳生长环境调理及施肥管理。但是作为管理农业生产的人员而言,仅仅数值化的物物相联并不能完全营造作物最佳生长条件。视频与图像监控为物与物之间的关联提供了更直观的表达方式。比如:哪块地缺水了,在物联网单层数据上看仅仅能看到水分数据偏低。应该灌溉到什么程度也不能死搬硬套地仅仅根据这一个数据来作决策。因为农业生产环境的不均匀性决定了农业信息获取上的先天性弊端,而很难从单纯的技术手段上进行突破。视频监控的引用,直观地反映了农作物生产的实时状态,引入视频图像与图像处理,既可直观反映一些作物的生长长势,也可以侧面反映出作物生长的整体状态及营养水平。可以从整体上给农户提供更加科学的种植决策理论依据。
主要功能:数据采集,数据处理,数据通信,信息查询,数据管理,泵站控制,预防报警,作物生长环境参数(土壤水分、养分、空气温湿度、光照、辐射、CO2、风速、风向、雨量等)实时采集和监控。
信息采集1、通过各种传感器采集各类信息,其中包括温湿度、二氧化碳、土壤水分、土壤温度、电导、PH、光量子、光照度、风速、风向、雨量计等2、一个基地可以建多个节点,每个节点可以根据需要连接多个传感器,各个节点可以互联,也可单独传到主控室,进而通过网络传到你的电脑或手机里。
本专题我共整理了10篇文章,来自中国农业科学院农业质量标准与检测技术研究所、南京农业大学、英国林肯大学、华南农业大学、江南大学、国家农业智能装备工程技术研究中心、浙江大学、中国科学院、吉林农业大学、西北农林 科技 大学、国家信息农业工程技术中心等单位。
文章包含农产品质量安全纳米传感器、太阳能杀虫灯、分簇路由算法、农田物联网混合多跳路由算法、水产养殖溶解氧传感器研制、土壤养分近场遥测方法、农机远程智能管理平台、水肥浓度智能感知与精准配比、果园多机器人通信等内容,供大家阅读、参考。
专题--农业传感器与物联网
Topic--Agricultural Sensor and Internet of Things
[1]王培龙, 唐智勇 农产品质量安全纳米传感应用研究分析与展望[J] 智慧农业(中英文), 2020, 2(2): 1-10
WANG Peilong , TANG Zhiyong Application analysis and prospect of nanosensor in the quality and safety of agricultural products[J] Smart Agriculture, 2020, 2(2): 1-10
知网阅读
[2]杨星, 舒磊, 黄凯, 李凯亮, 霍志强, 王彦飞, 王心怡, 卢巧玲, 张亚成 太阳能杀虫灯物联网故障诊断特征分析及潜在挑战[J] 智慧农业(中英文), 2020, 2(2): 11-27
YANG Xing, SHU Lei, HUANG Kai, LI Kailiang, HUO Zhiqiang, WANG Yanfei, WANG Xinyi, LU Qiaoling, ZHANG Yacheng Characteristics analysis and challenges for fault diagnosis in solar insecticidal lamps Internet of Things[J] Smart Agriculture, 2020, 2(2): 11-27
摘要: 太阳能杀虫灯物联网(SIL-IoTs)是一种基于农业场景与物联网技术的新型物理农业虫害防治工具,通过无线传输太阳能杀虫灯组件状态数据,用户可后台实时查看太阳能杀虫灯运行状态,具有杀虫计数、虫害区域定位、辅助农情监测等功能。但随着SIL-IoTs快速发展与广泛应用,故障诊断难和维护难等矛盾日益突出。基于此,本研究首先阐述了SIL-IoTs的结构和研究现状,分析了故障诊断的重要性,指出了故障诊断是保障其可靠性的主要手段。接着介绍了目前太阳能杀虫灯节点自身存在的故障及其在无线传感网络(WSNs)中的体现,并进一步对WSNs中的故障进行分类,包括基于行为、基于时间、基于组件以及基于影响区域的故障四类。随后讨论了统计方法、概率方法、层次路由方法、机器学习方法、拓扑控制方法和移动基站方法等目前主要使用的WSNs故障诊断方法。此外,还探讨了SIL-IoTs故障诊断策略,将故障诊断从行为上分为主动型诊断与被动型诊断策略,从监测类型上分为连续诊断、定期诊断、直接诊断与间接诊断策略,从设备上分为集中式、分布式与混合式策略。在以上故障诊断方法与策略的基础上,介绍了后台数据异常、部分节点通信异常、整个网络通信异常和未诊断出异常但实际存在异常四种故障现象下适用的WSNs故障诊断调试工具,如Sympathy、Clairvoyant、SNIF和Dustminer。最后,强调了SIL-IoTs的特性对故障诊断带来的潜在挑战,包括部署环境复杂、节点任务冲突、连续性区域节点无法传输数据和多种故障诊断失效等情形,并针对这些潜在挑战指出了合理的研究方向。由于SIL-IoTs为农业物联网中典型应用,因此本研究可扩展至其它农业物联网中,并为这些农业物联网的故障诊断提供参考。
知网阅读
[3]汪进鸿, 韩宇星 用于作物表型信息边缘计算采集的认知无线传感器网络分簇路由算法[J] 智慧农业(中英文), 2020, 2(2): 28-47
WANG Jinhong, HAN Yuxing Cognitive radio sensor networks clustering routing algorithm for crop phenotypic information edge computing collection[J] Smart Agriculture, 2020, 2(2): 28-47
摘要: 随着无线终端数量的快速增长和多媒体图像等高带宽传输业务需求的增加,农业物联网相关领域可预见地会出现无线频谱资源紧缺问题。针对基于传统物联网的作物表型信息采集系统中存在由于节点密集部署导致数据传输过程容易出现频谱竞争、数据拥堵的现象以及固定电池的网络由于能耗不均衡引起监测周期缩减等诸多问题,本研究建立了一个认知无线传感器网络(CRSN)作物表型信息采集模型,并针对模型提出一种引入边缘计算机制的动态频谱和能耗均衡(DSEB)的事件驱动分簇路由算法。算法包括:(1)动态频谱感知分簇,采用层次聚类算法结合频谱感知获取的可用信道、节点间的距离、剩余能量和邻居节点度为相似度对被监控区域内的节点进行聚类分簇并选取簇头,构建分簇拓扑的过程对各分簇大小的均衡性引入奖励和惩罚因子,提升网络各分簇平均频谱利用率;(2)融入边缘计算的事件触发数据路由,根据构建的分簇拓扑结构,将待检测各区域变化异常表型信息触发事件以簇内汇聚和簇间中继交替迭代方式转发至汇聚节点,簇内汇聚包括直传和簇内中继,簇间中继包括主网关节点和次网关节点-主网关节点两种情况;(3)基于频谱变化和通信服务质量(QoS)的自适应重新分簇:基于主用户行为变化引起的可用信道改变,或分簇效果不佳对通信服务质量产生的干扰,触发CRSN进行自适应重新分簇。此外,本研究还提出了一种新的能耗均衡策略去能量消耗中心化(假设sink为中心),即在网关或簇头节点选取计算式中引入与节点到sink的距离成正比的权重系数。算法仿真结果表明,与采用K-medoid分簇和能量感知的事件驱动分簇(ERP)路由方案相比,在CRSN节点数为定值的前提下,基于DSEB的分簇路由算法在网络生存期与能效等方面均具有一定的改进;在主用户节点数为定值时,所提算法比其它两种算法具有更高频谱利用率。
知网阅读
[4]顾浩, 王志强, 吴昊, 蒋永年, 郭亚 基于荧光法的溶解氧传感器研制及试验[J] 智慧农业(中英文), 2020, 2(2): 48-58
GU Hao, WANG Zhiqiang, WU Hao, JIANG Yongnian, GUO Ya A fluorescence based dissolved oxygen sensor[J] Smart Agriculture, 2020, 2(2): 48-58
摘要:溶解氧含量的测量对水产养殖具有极其重要的意义,但目前中国市面上的溶解氧传感器存在价格昂贵、不能持续在线测量及更新部件维护困难等问题,难以在水产养殖物联网中大规模推广和发挥作用。本研究基于荧光淬灭原理,利用水中溶解氧浓度与荧光信号相位差的关系进行低成本、易维护溶解氧传感器的研发。首先利用自制备溶氧敏感膜,经激发光照射后产生红色荧光,该荧光寿命可由溶解氧浓度调节;然后利用光信号敏感器件设计光电转化电路实现光信号感知;再以STM32F103微处理器作为主控芯片,编写下位机程序实现激发光脉冲产生,利用相敏检波原理以及快速傅里叶变换(FFT)计算激发光与参照光的相位差,进而转化为溶解氧浓度,实现溶解氧的测量。荧光探测部分与系统主控部分采用分离式设计思想,利用屏蔽排线直接插拔连接,便于传感器探测头的拆卸、更换、维护以及实现远距离在线测量。经测试,本溶解氧传感器的测量范围是0~20 mg/L,响应延迟小于2 s,溶氧敏感膜使用寿命约1年,可以实时不间断地对溶解氧浓度进行测量。同时,本传感器具有测量方便、制作成本低、体积小等特点,为中国水产养殖低成本溶解氧传感器的研发与市场化奠定了良好的基础。
知网阅读
[5]矫雷子, 董大明, 赵贤德, 田宏武 基于调制近红外反射光谱的土壤养分近场遥测方法研究[J] 智慧农业(中英文), 2020, 2(2): 59-66
JIAO Leizi, DONG Daming, ZHAO Xiande, TIAN Hongwu Near-field telemetry detection of soil nutrient based on modulated near-infrared reflectance spectrum[J] Smart Agriculture, 2020, 2(2): 59-66
摘要: 土壤养分作为农业生产的重要指标,含量过少会降低农作物产量,过多则会造成环境污染。因此,快速、准确检测土壤养分对于精准施肥和提高作物产量具有重要意义。基于取样和化学分析的传统方法能够全面准确地检测土壤养分,但检测过程中土壤的取样及预处理过程繁琐、 *** 作复杂、费时费力,不能实现土壤养分的原位快速检测。本研究基于调制近红外光谱,提出了一种土壤养分主动式近场遥测方法,可有效避免土壤反射自然光的干扰。该方法使用波长范围1260~1610 nm的8通道窄带激光二极管作为近红外光源,通过测量8通道激光光束的土壤反射率,建立土壤养分中氮(N)关于土壤反射率的计量模型,实现了N的快速检测。在74组已知N含量的土壤样品中,选取54组作为训练集,20组作为预测集。基于一般线性模型,对训练集中土壤N含量与土壤反射率的定量化参数进行训练,筛选显著波段后的计量模型R2达到097。基于建立的计量模型,预测集中土壤N含量预测值与参考值的决定系数R2达到09,结果表明该方法具有土壤养分现场快速检测的能力。
知网阅读
[6]朱登胜, 方慧, 胡韶明, 王文权, 周延锁, 王红艳, 刘飞, 何勇 农机远程智能管理平台研发及其应用[J] 智慧农业(中英文), 2020, 2(2): 67-81
ZHU Dengsheng, FANG Hui, HU Shaoming, WANG Wenquan, ZHOU Yansuo, WANG Hongyan, LIU Fei, HE Yong Development and application of an intelligent remote management platform for agricultural machinery[J] Smart Agriculture, 2020, 2(2): 67-81
摘要: 本研究针对农机管理实时数据少、农机实时作业监管困难、服务信息不对称等问题,首先提出专业化远程管理平台设计时应具有五大原则:专业化、标准化、云平台、模块化以及开放性。基于这些原则,本研究设计了基于大田作业智能传感技术、物联网技术、定位技术、遥感技术和地理信息系统的可定制化的通用农机远程智能管理平台。平台分别为各级政府管理部门、农机合作社、农机手、农户设计并实现了基于WebGIS 的农机信息库及农机位置服务、农机作业实时监测与管理、农田基础信息管理、田间作物基本信息管理、农机调度管理、农机补贴管理、农机作业订单管理等多个实用模块。研究着重分析了在当前的技术背景下,平台部分关键技术的实现方法,包括采用低精度GNSS定位系统前提下的作业面积的计算方法、GNSS定位数据处理过程中的数据问题分析、农机调度算法、作业传感器信息的集成等,并提出了以地块为核心的管理平台建设思路;同时提出农机作业管理平台将逐步从简单作业管理转向大田农机综合管理。本平台对同类型管理平台的研发具有一定的参考与借鉴作用。
知网阅读
[7]金洲, 张俊卿, 郭红燕, 胡宜敏, 陈翔宇, 黄河, 王红艳 水肥浓度智能感知与精准配比系统研制与试验[J] 智慧农业(中英文), 2020, 2(2): 82-93
JIN Zhou, ZHANG Junqing, GUO Hongyan, HU Yimin, CHEN Xiangyu, HUANG He, WANG Hongyan Development and testing of intelligent sensing and precision proportioning system of water and fertilizer concentration[J] Smart Agriculture, 2020, 2(2): 82-93
摘要: 为解决农场当地当时的复合肥料精准化配料问题,本研究将水肥一体化智能灌溉施肥系统作为研究对象,构建了水肥浓度智能感知与精准配比系统。首先提出现场在线水肥溶液智能感知模型的快速建立方法,利用数据分析算法从传感器实时监测的一系列浓度梯度的肥料溶液中挖掘出模型。其次基于上述模型设计水肥浓度智能感知与精准配比系统的框架结构,阐述系统工作原理;并通过三种水体模拟在线配肥验证了该系统原位指导水肥浓度配比的有效性,同时评价了水体电导率对水肥配比浓度的干扰。试验结果表明,正则化条件下二阶的多项式拟合曲线是表达溶液电导率与水肥浓度的变化关系最优的模型,相关系数R2均大于0999,由此模型可得出用户关心的复合肥各指标浓度。三种水体模拟在线配肥结果表明,水体会干扰电导率导致无法准确反演水肥配比的浓度,相对偏差值超过了01。因此,本研究提出的在线水肥智能感知与精准配比系统实现了消除当地水体电导率对水肥配比准确性的干扰,通过模型计算实现复合肥精准化配比,并得出各指标浓度。该系统结构简单,配比精准,易与现有水肥一体机或者人工配肥系统结合使用,可广泛应用于设施农业栽培、果园栽培和大田经济作物栽培等环境下的精准智能施肥。
知网阅读
[8]孙浩然, 孙琳, 毕春光, 于合龙 基于粒子群与模拟退火协同优化的农田物联网混合多跳路由算法[J] 智慧农业(中英文), 2020, 2(3): 98-107
SUN Haoran, SUN Lin, BI Chunguang, YU Helong Hybrid multi-hop routing algorithm for farmland IoT based on particle swarm and simulated annealing collaborative optimization method[J] Smart Agriculture, 2020, 2(3): 98-107
摘要: 农业无线传感器网络对农田土壤、环境和作物生长的多源异构信息的获取起关键作用。针对传感器在农田中非均匀分布且受到能量制约等问题,本研究提出了一种基于粒子群和模拟退火协同优化的农田物联网混合多跳路由算法(PSMR)。首先,通过节点剩余能量和节点度加权选择簇首,采用成簇结构实现异构网络高效动态组网。然后通过簇首间多跳数据结构解决簇首远距离传输能耗过高问题,利用粒子群与模拟退火协同优化方法提高算法收敛速度,实现sink节点加速采集簇首中的聚合数据。对算法的仿真试验结果表明,PSMR算法与基于能量有效负载均衡的多路径路由策略方法(EMR)相比,无线传感器网络生命周期提升了57%;与贪婪外围无状态路由算法(GPSR-A)相比,在相同的网络生命周期内,第1个死亡传感器节点推迟了两轮,剩余能量标准差减少了004 J,具有良好的网络能耗均衡性。本研究提出的PSMR算法通过簇首间多跳降低远端簇首额外能耗,提高了不同距离簇首的能耗均衡性能,为实现大规模农田复杂环境的长时间、高效、稳定地数据采集监测提供了技术基础,可提高农业物联网的资源利用效率。
知网阅读
[9]毛文菊, 刘恒, 王东飞, 杨福增, 刘志杰 面向果园多机器人通信的AODV路由协议改进设计与测试[J] 智慧农业(中英文), 2021, 3(1): 96-108
MAO Wenju, LIU Heng, WANG Dongfei, YANG Fuzeng, LIU Zhijie Improved AODV routing protocol for multi-robot communication in orchard[J] Smart Agriculture, 2021, 3(1): 96-108
摘要: 针对多机器人在果园中作业时的通信需求,本研究基于Wi-Fi信号在桃园内接收强度预测模型,提出了一种引入优先节点和路径信号强度阈值的改进无线自组网按需平面距离向量路由协议(AODV-SP)。对AODV-SP报文进行设计,并利用NS2仿真软件对比了无线自组网按需平面距离向量路由协议(AODV)和AODV-SP在发起频率、路由开销、平均端到端时延及分组投递率4个方面的性能。仿真试验结果表明,本研究提出的AODV-SP路由协议在发起频率、路由开销、平均端到端时延及分组投递率4个方面的性能均优于AODV协议,其中节点的移动速度为5 m/s时,AODV-SP的路由发起频率和路由开销较AODV分别降低了365%和709%,节点的移动速度为8 m/s时,AODV-SP的分组投递率提高了059%,平均端到端时延降低了1309%。为进一步验证AODV-SP协议的性能,在实验室环境中搭建了基于领航-跟随法的小型多机器人无线通信物理平台并将AODV-SP在此平台应用,并进行了静态丢包率和动态测试。测试结果表明,节点相距25 m时静态丢包率为0,距离100 m时丢包率为2101%;动态行驶时能使机器人维持链状拓扑结构。本研究可为果园多机器人在实际环境中通信系统的搭建提供参考。
知网阅读
[10]黄凯, 舒磊, 李凯亮, 杨星, 朱艳, 汪小旵, 苏勤 太阳能杀虫灯物联网节点的防盗防破坏设计及展望[J] 智慧农业(中英文), 2021, 3(1): 129-143
HUANG Kai, SHU Lei, LI Kailiang, YANG Xing, ZHU Yan, WANG Xiaochan, SU Qin Design and prospect for anti-theft and anti-destruction of nodes in Solar Insecticidal Lamps Internet of Things[J] Smart Agriculture, 2021, 3(1): 129-143
摘要: 太阳能杀虫灯在有效控制虫害的同时,可减少农药施药量。随着其部署数量的增加,被盗被破坏的报道也越来越多,严重影响了虫害防治效果并造成了较大的经济损失。为有效地解决太阳能杀虫灯物联网节点被盗被破坏问题,本研究以太阳能杀虫灯物联网为应用场景,对太阳能杀虫灯硬件进行改造设计以获取更多的传感信息;提出了太阳能杀虫灯辅助设备——无人机杀虫灯,用以被盗被破坏出现后的部署、追踪和巡检等应急应用。通过上述硬件层面的改造设计和增加辅助设备,可以获取更为全面的信息以判断太阳能杀虫灯物联网节点被盗被破坏情况。但考虑到被盗被破坏发生时间短,仅改造硬件层面还不足以实现快速准确判断。因此,本研究进一步从内部硬件、软件算法和外形结构设计三个层面,探讨了设备防盗防破坏的优化设计、设备防盗防破坏判断规则的建立、设备被盗被破坏的快速准确判断、设备被盗被破坏的应急措施、设备被盗被破坏的预测与防控,以及优化计算以降低网络数据传输负荷六个关键研究问题,并对设备防盗防破坏技术在太阳能杀虫灯物联网场景中的应用进行了展望。
知网阅读
微信交流服务群
为方便农业科学领域读者、作者和审稿专家学术交流,促进智慧农业发展,为更好地服务广大读者、作者和审稿人,编辑部建立了微信交流服务群,有关专业领域内的问题讨论、投稿相关的问题均可在群里咨询。
入群方法: 加我微信 331760296 , 备注: 姓名、单位、研究方向 ,我拉您进群,机构营销广告人员勿扰。
信息发布
科研团队介绍及招聘信息、学术会议及相关活动 的宣传推广
智慧农业产业链全景图谱
智慧农业就是将物联网技术运用到传统农业中去,运用传感器和软件通过移动平台或者电脑等工具对动植物、土壤、环境等因素进行从宏观到微观的实时检测,提高对农业动植物生命体本质的认知能力以及农业复杂系统的调控能力和农业突发事件的处理能力,以达到合理使用农业资源,降低生产成本、改善生态环境、提高农产品产量和品质的目的。
智慧农业上游零部件及系统主要为卫星导航系统、集成电路、传感器等,上游主要原材料主要为有色金属、单晶硅、电子陶瓷等;智慧农业中游主要包括数据平台、无人机植保、农机自动机械、智能化养殖等;智慧农业下游主要为农产品生产。具体的智慧农业行业产业全景图如下:
智慧农业上游卫星导航系统代表性企业主要包括北斗星通、华测导航、中海达、华力创通等;集成电路代表企业主要包括中芯国际、台积电、SK海力士等;传感器领域主要代表企业包括海康威视、大立科技、歌尔股份等;从原材料来看,智慧农业上游所需设备及系统原材料有色金属生产企业包括焦作万方、新疆众合等企业;单晶硅生产企业包括隆基、众合股份等;电子陶瓷生产企业包括京瓷、三环集团等企业。
智慧农业中游数据平台领域代表性企业包括海芯华夏、奥科美等;无人机植保领域代表性企业包括大疆创新、极飞科技等;农机自动机械领域代表性企业包括博创联动、司南导航等;智能化养殖领域包括网易等科技企业,以及特驱集团、温氏股份等企业。智慧农业下游主要包括中粮集团、深农智能、新希望集团等企业。
智慧农业产业链区域分布地图
从我国智慧农业相关企业注册地分布来看,智慧农业企业注册地分布较为分散,全国各个地区均有企业布局。其中山东、江苏、广东三地为智慧农业企业注册数量前三名,分别有智慧农业注册企业1901、1594、1486家。
智慧农业代表性企业业务布局情况
从公司业务布局来看,智慧农业所涉及的细分领域较多,行业代表性企业在业务布局方面各有重点,可根据不同的市场需求提供不同的产品或服务。其中,海芯华夏等企业智慧农业占比较高,达100%;区域布局方面,智慧农业行业代表性企业主要在国内开展业务,部分企业在境外也有业务,但业务占比较小。
智慧农业代表性企业业务最新动向和规划
从中国智慧农业行业代表性公司最新动态和业务规划来看,各企业均在积极进行技术创新和研发,并尝试布局新领域,寻找新的增长点。如神州信息联合农业农村部大数据发展中心共同研发“农业农村大数据公共平台基座”,提升农业农村部门数字化治理能力。
更多本行业研究分析详见前瞻产业研究院《中国智慧农业发展前景预测与投资战略规划分析报告》欢迎分享,转载请注明来源:内存溢出
评论列表(0条)