●设备兼容技术:大部分情况下,企业会基于现有的工业系统建造工业物联网,如何实现工业物联网中所用的传感器能够与原有设备已应用的传感器相兼容是工业物联网推广所面临的问题之一。传感器的兼容主要指数据格式的兼容与通信协议的兼容,兼容关键是标准的统一。目前,工业现场总线网络中普遍采用的如Profibus、Modus协议,已经较好地解决了兼容性问题,大多数工业设备生产厂商基于这些协议开发了各类传感器、控制器等。近年来,随着工业无线传感器网络应用日渐普遍,当前工业无线的WirelessHART、ISA100.11a以及wIA—PA3大标准均兼容了IEEE802.15.4无线网络协议,并提供了隧道传输机制兼容现有的通信协议,丰富了工业物联网系统的组成与功能。
●网络技术:网络是构成工业物联网的核心之一,数据在系统不同的层次之间通过网络进行传输。网络分为有线网络与无线网络,有线网络一般应用于数据处理中心的集群服务器、工厂内部的局域网以及部分现场总线控制网络中,能提供高速率高带宽的数据传输通道。工业无线传感器网络则是一种新兴的利用无线技术进行传感器组网以及数据传输的技术,无线网络技术的应用可以使得工业传感器的布线成本大大降低,有利于传感器功能的扩展,因此吸引了国内外众多企业和科研机构的关注。
传统的有线网络技术较为成熟,在众多场合已得到了应用验证。然而,当无线网络技术应用于工业环境时,会面临如下问题:工业现场强电磁干扰、开放的无线环境让工业机器更容易受到攻击威胁、部分控制数据需要实时传输。相对于有线网络,工业无线传感器网络技术则正处在发展阶段,它解决了传统的无线网络技术应用于工业现场环境时的不足,提供了高可靠性、高实时性以及高安全性,主要技术包括:自适应跳频、确实性通信资源调度、无线路由、低开销高精度时间同步、网络分层数据加密、网络异常监视与报警以及设备入网鉴权等。
●信息处理技术:工业信息出现爆炸式增长,工业生产过程中产生的大量数据对于工业物联网来说是一个挑战,如何有效处理、分析、记录这些数据,提炼出对工业生产有指导性建议的结果,是工业物联网的核心所在,也是难点所在。
当前业界大数据处理技术有很多,如SAP的BW系统在一定程度上解决了大数据给企业生产运营带来的问题。数据融合和数据挖掘技术的发展也使海量信息处理变得更为智能、高效。工业物联网泛在感知的特点使得人也成为了被感知的对象,通过对环境数据的分析以及用户行为的建模,可以实现生产设计、制造、管理过程中的人一人、人一机和机一机之间的行为、环境和状态感知,更加真实地反映出工业生产过程中的细节变化,以便得出更准确的分析结果。
●安全技术:工业物联网安全主要涉及数据采集安全、网络传输安全等过程,信息安全对于企业运营起到关键作用,例如在冶金、煤炭、石油等行业采集数据需要长时问的连续运行,如何保证在数据采集以及传输过程中信息的准确无误是工业物联网应用于实际生产的前提。
物联网( IoT ,Internet of things )即“万物相连的互联网”,是互联网基础上的延伸和扩展的网络,将各种信息传感设备与互联网结合起来而形成的一个巨大网络,实现在任何时间、任何地点,人、机、物的互联互通。
1、射频识别技术
射频识别技术(Radio Frequency Identification,简称RFID)。RFID是一种简单的无线系统,由一个询问器(或阅读器)和很多应答器(或标签)组成。标签由耦合元件及芯片组成,每个标签具有唯扩展词条一的电子编码。
标签附着在物体上标识目标对象,它通过天线将射频信息传递给阅读器,阅读器就是读取信息的设备。RFID技术让物品能够“开口说话”。这就赋予了物联网一个特性即可跟踪性。就是说人们可以随时掌握物品的准确位置及其周边环境。
2、传感网
MEMS是微机电系统( Micro - Electro - Mechanical Systems)的英文缩写。它是由微传感器、微执行器、信号处理和控制电路、通讯接口和电源等部件组成的一体化的微型器件系统。
其目标是把信息的获取、处理和执行集成在一起,组成具有多功能的微型系统,集成于大尺寸系统中,从而大幅度地提高系统的自动化、智能化和可靠性水平。
3、M2M系统框架
M2M是Machine-to-Machine/Man的简称,是一种以机器终端智能交互为核心的、网络化的应用与服务。它将使对象实现智能化的控制。M2M技术涉及5个重要的技术部分:机器、M2M硬件、通信网络、中间件、应用。
基于云计算平台和智能网络,可以依据传感器网络获取的数据进行决策,改变对象的行为进行控制和反馈。
4、云计算
云计算旨在通过网络把多个成本相对较低的计算实体整 合成一个具有强大计算能力的完美系统,并借助先进的商业 模式让终端用户可以得到这些强大计算能力的服务。
如果将计算能力比作发电能力,那么从古老的单机发电模式转向现 代电厂集中供电的模式,就好比现在大家习惯的单机计算模 式转向云计算模式,而“云”就好比发电厂,具有单机所不能比拟的强大计算能力。
扩展资料:
物联网功能
1、获取信息的功能
主要是信息的感知、识别,信息的感知是指对事物属性状态及其变化方式的知觉和敏感;信息的识别指能把所感受到的事物状态用一定方式表示出来。
2、传送信息的功能
主要是信息发送、传输、接收等环节,最后把获取的事物状态信息及其变化的方式从时间(或空间)上的一点传送到另一点的任务,这就是常说的通信过程。
3、处理信息的功能
是指信息的加工过程,利用已有的信息或感知的信息产生新的信息,实际是制定决策的过程。
4、施效信息的功能
指信息最终发挥效用的过程,有很多的表现形式,比较重要的是通过调节对象事物的状态及其变换方式,始终使对象处于预先设计的状态
参考资料来源:百度百科-物联网
需要的技术很多。现在国内重点支持的关键技术研发项目:
1.超高频和微波RFID芯片设计、产品的技术研发;
2.微型和智能传感器技术研发;
3.无线传感器网络自组网技术研发;
4.低功耗无线传感器节点产品技术研发;
5.物联网数据传输中间件技术研发;
6.面向行业应用海量数据的数据挖掘技术研发;
7.图像视频智能分析和识别技术研发;
8.物联网安全等级保护和安全测评技术研发。
物联网架构中智能公交实例中的四个层次分别是感知层、网络层、数据处理层和应用层。
感知层:感知层是物联网架构的最底层,包括传感器、执行器等各类物联网设备,用于采集各种物理量、环境数据和状态信息等。在智能公交实例中,感知层包括GPS定位、车载摄像头、气象传感器、车载计算机等设备,用于实时采集公交车运行的位置、状态、路况、天气等信息。
网络层:网络层是物联网的中间层,主要负责数据的传输和处理,将感知层采集到的数据传输到数据处理层进行分析和处理。在智能公交实例中,网络层包括无线通信网络和互联网,用于连接各个公交车辆和数据处理中心。
数据处理层:数据处理层是物联网实现数据智能分析和决策的核心层次,主要由数据存储、数据分析、数据挖掘等组成,用于对感知层采集到的海量数据进行处理和分析。在智能公交实例中,数据处理层包括云端服务器、物联网平台等设施,用于对公交车的实时位置、车速、路况等信息进行处理、分析和预测。
应用层:应用层是物联网架构的最高层,主要是由各种智能应用程序组成,用于实现物联网数据的应用和展示。在智能公交实例中,应用层包括公交车调度和管理系统、智能导航系统、乘客安全监控系统等应用程序,用于指导公交车的运行、改善乘客出行体验等。
总之,物联网架构中智能公交实例的四个层次,构成了一个完整的物联网生态系统,涵盖了物联网系统的各个方面,为智慧城市的建设和公共交通业的发展提供了有力的支持。
传感器网络技术是物联网技术的核心
传感器技术是计算机应用中的一项关键技术。它将传输线上的模拟信号转换成可处理的数字信号,并将其交给计算机进行处理。
它主要将传感器、数据处理单元组件和通信组件集成在需要随机分布的信息采集和传输的区域,形成一个网络结构(即传感器网络)。节点数量相对较多,可以适应复杂多变的环境。作为物联网技术的核心,它在物联网与信息交换和传输之间起着非常重要的作用。
在物联网技术中,以物联网卡片为载体。通过在设备中插入物联网卡来实现身份识别和承载服务的功能,可以实现物联网的各种技术。
富宏智能是中国领先的物联网、数据挖掘与应用提供商,其盈利情况良好。从2017年至今,富宏智能已实现持续稳健的收入和利润增长,今年上半年收入达到了1085亿元,同比增长459%,归属于母公司股东的净利润为267亿元,同比增长321%。一、物联网概念随着互联网技术、传感器技术和人工智能技术的快速发展,物联网技术也应运而生,物联网技术在各类领域能发挥重要性变革,对解放生产力、提高工作效率和推动规模化生产等方面贡献颇大,特别是在农业领域大有可为。实现智慧农业,必须依靠物联网技术为依托,以智慧平台为核心,立足市场需求,构建生产组织智能化、产品质量溯源化、市场经营网络化为一体的产业体系。
物联网是通过智能传感器、射频识别、激光扫描仪、全球定位系统、遥感等信息传感器设备及系统和其他基于物-物通信模式的短距离自组织网络,按照约定的协议,在物品与互联网连接起来,进行信息交换和通信,以实现智能化识别、定位、跟踪、监控和管理的一种巨大智能网络。它是通信网和互联网的扩展应用和网络延伸,主要是实现人与物、物与物的信息交互。
二、物联网四层模型
在信息层面,数据信息经历生成、传输、处理和应用四个阶段,分别对应着物联网的感知识别层、网络构建层、数据处理层和综合应用层。感知识别层是利用感知技术和智能装备对物理世界进行感知识别。网络构建层是按照特定的通信协议搭建各类网络对信息进行传输,以实现物-网互联。数据处理层通过大数据和人工智能技术对网络层采样的数据进行预处理、计算存储和数据挖掘等一系列 *** 作,最大地发挥出信息的生产效能。综合应用层是集成各类技术以实现实时控制、精准管理和科学决策等功能的应用系统,从而改进人的生产方式。各类技术应对不同环境、不同需求独立展开工作,各层面间又是联系紧密,如同链条式协同配合。
感知层作为物联网的“神经末梢”,主要是通过信息感知技术将生活生产各方面映射成数据信息,并能可靠传送到网络层,实现物理世界和信息世界连接起来。信息感知技术是指利用传感器、RFID、GPS和RS等实时实地对农业领域物体进行信息采集和获取。在农业生产现场可以利用无线传感器采集温湿度、光照、溶解氧浓度和农作物长势等参数,利用视频监控设备获取农作物成长现状,利用遥感技术大规模感知农作物表面和环境因素。信息感知层作为物联网的基础,获取大量的数据信息,为信息进一步加工、处理、分析而科学决策和指导生产经营打通“二元”壁垒。
网络层要在感知层和处理层发挥承上启下作用,是以现场总线技术、无线传感器网络技术(WSN)和移动通信技术互为补充的通信网络将传感设备连接“上网”。信息传输技术可分为有线和无线、短距离和长距离,它们有各自特点、应对不同环境、利用不同信道共同组建集成网络体系,以实现高度可靠的信息交流和共享。无线传感器网络成为农业信息传输的“主力军”,通过包括传感器节点、汇聚节点、任务管理节点。大量具有独立处理能力的微型传感器节点布置在监测区域逐跳传输,并路由到汇聚节点,然后通过互联网或卫星抵达任务管理节点,最后用户通过任务管理节点配置和管理传感器网络以实现监测任务发布和数据收集。常见的无线局域网技术有蓝牙、WIFI、ZigBee,无线广域网技术有LPWAN、NB-IOT、4G和5G。特别是以“万物互联”为目标的5G将农业物联网数据传输效率带来“质的跃升”。
处理层是农业物联网的“灵魂”,通过信息处理技术对感知层采集的信息存储和挖掘分析形成预测预警、智能决策、优化控制和疾病诊断等智能模型,从而对农业生产和经营给出科学的指导。农业生产和经营过程中,数据信息是呈指数型爆炸产生,不仅是体量大,而且结构复杂、实时性强、关联度高,必须通过大数据技术处理、存储和管理,才能从海量数据中获取更多的价值。农业大数据技术平台是以Hadoop架构、MapReduce软件模型、其他组件补充的生态软件体系形成的分布式海量数据存储管理、运算处理和分析平台。数据挖掘是指从海量数据中通过算法搜索隐藏的信息关系,主要手段是机器学习、深度学习、计算机视觉等人工智能技术。只要获取隐藏知识,才能帮助决策者做出合理、正确的决定和决策。
应用层是农业物联网的“指挥室”。主要通过感知技术、传输技术、处理技术和设备进行软硬件综合集成,形成智能控制、监控决策、专家系统、物流溯源等等应用。根据生产、经营的和管理不同需求,开发出特定功能的应用,用户通过web端或移动客户端应用实时掌握信息、发出精准控制指令。可以说,先进技术发挥设备的最大生产力,综合应用改变人的工作方式,有利于做出更科学合理决策。以德诺迈斯智能家居使用的的物联网为例:
1)核心技术包括:
a)
感知:传感器技术(传感器精度等,可参考Auto-ID实验室的技术成果);
b)
传输:无线传输技术(低功耗、自适应、传输协议);
c)
应用:数据处理(分布式、云计算、数据挖掘)、上层业务解决方案、信息安全
2)难题:技术的合理应用、没有标准、缺乏市场的需求刺激
另:物联网不是一个产业,更可以说是一种服务和应用。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)