大数据这一概念早已有之,只是在较长的一段时间里处于沉寂状态。近年来,随着人们意识的增强以及观念的更新,大数据又重回人们的视线,并逐渐成为一股革新浪潮。大数据又名巨量资料,其涉及的数据量规模巨大,以至于无法通过主流工具在短时间内实现撷取与管理。对于这一部分海量、高增长且多样化的信息资产,只有运用更强的洞察力、决策力以及流程优化能力才能发现隐藏在数据背后的规律与价值,而可穿戴设备以及汽车中传感器应用的盛行,标志着大数据应用已经开始延伸到物联网领域。
在物联网中,对大数据技术的应用提出了更高的要求:首先,物联网中的数据量更大。物联网的组成节点除了人和服务器之外,也包括物品、设备、传感网等,数据流源源不断的产生,其数量规模远远大于互联网。其次,物联网中的数据传输速率更高。由于物联网与真实物理世界直接关联,要求实时访问以及控制相应的节点和设备,需要高数据传输速率予以支持。此外,物联网中数据的海量性也必然要求更高的传输速率。再者,物联网中的数据更加多样化。物联网涉及广泛的应用范围,从智能家居、智慧交通、智慧医疗、智慧物流到安防监控等,无一不是物联网的应用范畴。同时,在不同领域、不同行业,也需要面对不同类型和不同格式的数据,这使得物联网中的数据更加多样化。
针对物联网对海量数据的处理与应用需求,万物云开发团队在现有数据立方(DataCube)的基础之上,打造了一个针对智能硬件与物联网应用的大数据服务平台。该平台包括一个硬件数据服务接口,一个平台数据服务逻辑层以及一套面向应用的编程接口。物联网开发团队只需关注硬件及应用,就可通过万物云轻松处理物联网上的大数据。具体而言,万物云拥有如下特性。
丰富多样的应用功能。首先,万物云提供清晰而简明的编程实例、接口文档以及丰富的案例样本代码,以帮助开发者快速开发跨平台物联网应用,并通过社区论坛、微信和微博等社交平台提供全方位的技术支持。同时,万物云平台支持>
物联网时代的大数据策略
互联网时代,PC、Pad、智能手机等设备无处不在,数以亿计的用户通过微博、微信、SNS、博客等途径产生大量的自媒体数据,电商、新闻类网站、搜索引擎每时每刻都在记录着丰富的用户行为信息,海量的数据促进了云计算,分布式技术的发展,而这些技术反过来不仅推动了Web和移动互联网的革新,也推动了物联网的飞速前进。现在,我们正逐渐迈入物联网时代,实现万物互联的愿景,如果说之前人是信息生产的主体,那么或许不久的将来设备将成为主角,它们将源源不断地产生与人相关的衣食住行信息,这些信息会通过云计算、数据挖掘等技术实现价值的升华从而为用户提供更优质、贴心的服务。那么物联网时代会产生什么样的数据,应该采用什么样的大数据策略呢?
THINKstrategies 的总经理 Jeff Kaplan 在自己的博文《 当物联网遇见大数据 》中写道:
“你不能使用现在的策略,因为可以被捕获、管理并利用的数据将更加多样化,同时用例也会更加丰富。附加到各种设备和对象上的传感器会产生各种类型的数据。这些数据将会用于各种响应式的、主动的或者 创造性的目的 。IT部门的任务就是与业务部门一起工作,完全理解物联网方面的用例,然后寻找满足业务需求的技术。特别是,IT部门必须识别出最优的分析平台和工具,让业务用户能够获取到需要的数据,分析数据的含义并快速地做出响应。”
Gartner公司的副总裁、著名分析师 Joe Skorupa 认为:
“分布在世界各地的物联网设备将产生大量的输入数据,将所有的数据传送到一个位置进行处理无论从技术上还是从经济上都是无法实现的。最近的趋势——将应用程序集中起来以便于降低成本并增强安全性——并不适合物联网。组织必须将数据集中到多个分布式的小型数据中心中,在此对数据进行初步的处理并发送到一个中心站点进行额外的处理。数据中心管理员需要在这些区域部署更加具有前瞻性的容量以满足业务发展的需要。”
Patrick McFadin则在自己的博文《 物联网:数据都去了哪里? 》中阐述了一个具体的数据策略解决方案。他认为整个过程可以分为三个阶段:产生数据并通过Internet传递、中央系统收集并组织数据、持续的数据分析与使用。
第一阶段需要决定数据创建的标准以及如何通过网络进行传递。Patrick McFadin认为可以通过>
以上是小编为大家分享的关于物联网时代的大数据策略的相关内容,更多信息可以关注环球青藤分享更多干货
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)