专题推荐 - 农业传感器与物联网专题

专题推荐 - 农业传感器与物联网专题,第1张

本专题我共整理了10篇文章,来自中国农业科学院农业质量标准与检测技术研究所、南京农业大学、英国林肯大学、华南农业大学、江南大学、国家农业智能装备工程技术研究中心、浙江大学、中国科学院、吉林农业大学、西北农林 科技 大学、国家信息农业工程技术中心等单位。

文章包含农产品质量安全纳米传感器、太阳能杀虫灯、分簇路由算法、农田物联网混合多跳路由算法、水产养殖溶解氧传感器研制、土壤养分近场遥测方法、农机远程智能管理平台、水肥浓度智能感知与精准配比、果园多机器人通信等内容,供大家阅读、参考。

专题--农业传感器与物联网

Topic--Agricultural Sensor and Internet of Things

[1]王培龙, 唐智勇 农产品质量安全纳米传感应用研究分析与展望[J] 智慧农业(中英文), 2020, 2(2): 1-10

WANG Peilong , TANG Zhiyong Application analysis and prospect of nanosensor in the quality and safety of agricultural products[J] Smart Agriculture, 2020, 2(2): 1-10

知网阅读

[2]杨星, 舒磊, 黄凯, 李凯亮, 霍志强, 王彦飞, 王心怡, 卢巧玲, 张亚成 太阳能杀虫灯物联网故障诊断特征分析及潜在挑战[J] 智慧农业(中英文), 2020, 2(2): 11-27

YANG Xing, SHU Lei, HUANG Kai, LI Kailiang, HUO Zhiqiang, WANG Yanfei, WANG Xinyi, LU Qiaoling, ZHANG Yacheng Characteristics analysis and challenges for fault diagnosis in solar insecticidal lamps Internet of Things[J] Smart Agriculture, 2020, 2(2): 11-27

摘要: 太阳能杀虫灯物联网(SIL-IoTs)是一种基于农业场景与物联网技术的新型物理农业虫害防治工具,通过无线传输太阳能杀虫灯组件状态数据,用户可后台实时查看太阳能杀虫灯运行状态,具有杀虫计数、虫害区域定位、辅助农情监测等功能。但随着SIL-IoTs快速发展与广泛应用,故障诊断难和维护难等矛盾日益突出。基于此,本研究首先阐述了SIL-IoTs的结构和研究现状,分析了故障诊断的重要性,指出了故障诊断是保障其可靠性的主要手段。接着介绍了目前太阳能杀虫灯节点自身存在的故障及其在无线传感网络(WSNs)中的体现,并进一步对WSNs中的故障进行分类,包括基于行为、基于时间、基于组件以及基于影响区域的故障四类。随后讨论了统计方法、概率方法、层次路由方法、机器学习方法、拓扑控制方法和移动基站方法等目前主要使用的WSNs故障诊断方法。此外,还探讨了SIL-IoTs故障诊断策略,将故障诊断从行为上分为主动型诊断与被动型诊断策略,从监测类型上分为连续诊断、定期诊断、直接诊断与间接诊断策略,从设备上分为集中式、分布式与混合式策略。在以上故障诊断方法与策略的基础上,介绍了后台数据异常、部分节点通信异常、整个网络通信异常和未诊断出异常但实际存在异常四种故障现象下适用的WSNs故障诊断调试工具,如Sympathy、Clairvoyant、SNIF和Dustminer。最后,强调了SIL-IoTs的特性对故障诊断带来的潜在挑战,包括部署环境复杂、节点任务冲突、连续性区域节点无法传输数据和多种故障诊断失效等情形,并针对这些潜在挑战指出了合理的研究方向。由于SIL-IoTs为农业物联网中典型应用,因此本研究可扩展至其它农业物联网中,并为这些农业物联网的故障诊断提供参考。

知网阅读

[3]汪进鸿, 韩宇星 用于作物表型信息边缘计算采集的认知无线传感器网络分簇路由算法[J] 智慧农业(中英文), 2020, 2(2): 28-47

WANG Jinhong, HAN Yuxing Cognitive radio sensor networks clustering routing algorithm for crop phenotypic information edge computing collection[J] Smart Agriculture, 2020, 2(2): 28-47

摘要: 随着无线终端数量的快速增长和多媒体图像等高带宽传输业务需求的增加,农业物联网相关领域可预见地会出现无线频谱资源紧缺问题。针对基于传统物联网的作物表型信息采集系统中存在由于节点密集部署导致数据传输过程容易出现频谱竞争、数据拥堵的现象以及固定电池的网络由于能耗不均衡引起监测周期缩减等诸多问题,本研究建立了一个认知无线传感器网络(CRSN)作物表型信息采集模型,并针对模型提出一种引入边缘计算机制的动态频谱和能耗均衡(DSEB)的事件驱动分簇路由算法。算法包括:(1)动态频谱感知分簇,采用层次聚类算法结合频谱感知获取的可用信道、节点间的距离、剩余能量和邻居节点度为相似度对被监控区域内的节点进行聚类分簇并选取簇头,构建分簇拓扑的过程对各分簇大小的均衡性引入奖励和惩罚因子,提升网络各分簇平均频谱利用率;(2)融入边缘计算的事件触发数据路由,根据构建的分簇拓扑结构,将待检测各区域变化异常表型信息触发事件以簇内汇聚和簇间中继交替迭代方式转发至汇聚节点,簇内汇聚包括直传和簇内中继,簇间中继包括主网关节点和次网关节点-主网关节点两种情况;(3)基于频谱变化和通信服务质量(QoS)的自适应重新分簇:基于主用户行为变化引起的可用信道改变,或分簇效果不佳对通信服务质量产生的干扰,触发CRSN进行自适应重新分簇。此外,本研究还提出了一种新的能耗均衡策略去能量消耗中心化(假设sink为中心),即在网关或簇头节点选取计算式中引入与节点到sink的距离成正比的权重系数。算法仿真结果表明,与采用K-medoid分簇和能量感知的事件驱动分簇(ERP)路由方案相比,在CRSN节点数为定值的前提下,基于DSEB的分簇路由算法在网络生存期与能效等方面均具有一定的改进;在主用户节点数为定值时,所提算法比其它两种算法具有更高频谱利用率。

知网阅读

[4]顾浩, 王志强, 吴昊, 蒋永年, 郭亚 基于荧光法的溶解氧传感器研制及试验[J] 智慧农业(中英文), 2020, 2(2): 48-58

GU Hao, WANG Zhiqiang, WU Hao, JIANG Yongnian, GUO Ya A fluorescence based dissolved oxygen sensor[J] Smart Agriculture, 2020, 2(2): 48-58

摘要:溶解氧含量的测量对水产养殖具有极其重要的意义,但目前中国市面上的溶解氧传感器存在价格昂贵、不能持续在线测量及更新部件维护困难等问题,难以在水产养殖物联网中大规模推广和发挥作用。本研究基于荧光淬灭原理,利用水中溶解氧浓度与荧光信号相位差的关系进行低成本、易维护溶解氧传感器的研发。首先利用自制备溶氧敏感膜,经激发光照射后产生红色荧光,该荧光寿命可由溶解氧浓度调节;然后利用光信号敏感器件设计光电转化电路实现光信号感知;再以STM32F103微处理器作为主控芯片,编写下位机程序实现激发光脉冲产生,利用相敏检波原理以及快速傅里叶变换(FFT)计算激发光与参照光的相位差,进而转化为溶解氧浓度,实现溶解氧的测量。荧光探测部分与系统主控部分采用分离式设计思想,利用屏蔽排线直接插拔连接,便于传感器探测头的拆卸、更换、维护以及实现远距离在线测量。经测试,本溶解氧传感器的测量范围是0~20 mg/L,响应延迟小于2 s,溶氧敏感膜使用寿命约1年,可以实时不间断地对溶解氧浓度进行测量。同时,本传感器具有测量方便、制作成本低、体积小等特点,为中国水产养殖低成本溶解氧传感器的研发与市场化奠定了良好的基础。

知网阅读

[5]矫雷子, 董大明, 赵贤德, 田宏武 基于调制近红外反射光谱的土壤养分近场遥测方法研究[J] 智慧农业(中英文), 2020, 2(2): 59-66

JIAO Leizi, DONG Daming, ZHAO Xiande, TIAN Hongwu Near-field telemetry detection of soil nutrient based on modulated near-infrared reflectance spectrum[J] Smart Agriculture, 2020, 2(2): 59-66

摘要: 土壤养分作为农业生产的重要指标,含量过少会降低农作物产量,过多则会造成环境污染。因此,快速、准确检测土壤养分对于精准施肥和提高作物产量具有重要意义。基于取样和化学分析的传统方法能够全面准确地检测土壤养分,但检测过程中土壤的取样及预处理过程繁琐、 *** 作复杂、费时费力,不能实现土壤养分的原位快速检测。本研究基于调制近红外光谱,提出了一种土壤养分主动式近场遥测方法,可有效避免土壤反射自然光的干扰。该方法使用波长范围1260~1610 nm的8通道窄带激光二极管作为近红外光源,通过测量8通道激光光束的土壤反射率,建立土壤养分中氮(N)关于土壤反射率的计量模型,实现了N的快速检测。在74组已知N含量的土壤样品中,选取54组作为训练集,20组作为预测集。基于一般线性模型,对训练集中土壤N含量与土壤反射率的定量化参数进行训练,筛选显著波段后的计量模型R2达到097。基于建立的计量模型,预测集中土壤N含量预测值与参考值的决定系数R2达到09,结果表明该方法具有土壤养分现场快速检测的能力。

知网阅读

[6]朱登胜, 方慧, 胡韶明, 王文权, 周延锁, 王红艳, 刘飞, 何勇 农机远程智能管理平台研发及其应用[J] 智慧农业(中英文), 2020, 2(2): 67-81

ZHU Dengsheng, FANG Hui, HU Shaoming, WANG Wenquan, ZHOU Yansuo, WANG Hongyan, LIU Fei, HE Yong Development and application of an intelligent remote management platform for agricultural machinery[J] Smart Agriculture, 2020, 2(2): 67-81

摘要: 本研究针对农机管理实时数据少、农机实时作业监管困难、服务信息不对称等问题,首先提出专业化远程管理平台设计时应具有五大原则:专业化、标准化、云平台、模块化以及开放性。基于这些原则,本研究设计了基于大田作业智能传感技术、物联网技术、定位技术、遥感技术和地理信息系统的可定制化的通用农机远程智能管理平台。平台分别为各级政府管理部门、农机合作社、农机手、农户设计并实现了基于WebGIS 的农机信息库及农机位置服务、农机作业实时监测与管理、农田基础信息管理、田间作物基本信息管理、农机调度管理、农机补贴管理、农机作业订单管理等多个实用模块。研究着重分析了在当前的技术背景下,平台部分关键技术的实现方法,包括采用低精度GNSS定位系统前提下的作业面积的计算方法、GNSS定位数据处理过程中的数据问题分析、农机调度算法、作业传感器信息的集成等,并提出了以地块为核心的管理平台建设思路;同时提出农机作业管理平台将逐步从简单作业管理转向大田农机综合管理。本平台对同类型管理平台的研发具有一定的参考与借鉴作用。

知网阅读

[7]金洲, 张俊卿, 郭红燕, 胡宜敏, 陈翔宇, 黄河, 王红艳 水肥浓度智能感知与精准配比系统研制与试验[J] 智慧农业(中英文), 2020, 2(2): 82-93

JIN Zhou, ZHANG Junqing, GUO Hongyan, HU Yimin, CHEN Xiangyu, HUANG He, WANG Hongyan Development and testing of intelligent sensing and precision proportioning system of water and fertilizer concentration[J] Smart Agriculture, 2020, 2(2): 82-93

摘要: 为解决农场当地当时的复合肥料精准化配料问题,本研究将水肥一体化智能灌溉施肥系统作为研究对象,构建了水肥浓度智能感知与精准配比系统。首先提出现场在线水肥溶液智能感知模型的快速建立方法,利用数据分析算法从传感器实时监测的一系列浓度梯度的肥料溶液中挖掘出模型。其次基于上述模型设计水肥浓度智能感知与精准配比系统的框架结构,阐述系统工作原理;并通过三种水体模拟在线配肥验证了该系统原位指导水肥浓度配比的有效性,同时评价了水体电导率对水肥配比浓度的干扰。试验结果表明,正则化条件下二阶的多项式拟合曲线是表达溶液电导率与水肥浓度的变化关系最优的模型,相关系数R2均大于0999,由此模型可得出用户关心的复合肥各指标浓度。三种水体模拟在线配肥结果表明,水体会干扰电导率导致无法准确反演水肥配比的浓度,相对偏差值超过了01。因此,本研究提出的在线水肥智能感知与精准配比系统实现了消除当地水体电导率对水肥配比准确性的干扰,通过模型计算实现复合肥精准化配比,并得出各指标浓度。该系统结构简单,配比精准,易与现有水肥一体机或者人工配肥系统结合使用,可广泛应用于设施农业栽培、果园栽培和大田经济作物栽培等环境下的精准智能施肥。

知网阅读

[8]孙浩然, 孙琳, 毕春光, 于合龙 基于粒子群与模拟退火协同优化的农田物联网混合多跳路由算法[J] 智慧农业(中英文), 2020, 2(3): 98-107

SUN Haoran, SUN Lin, BI Chunguang, YU Helong Hybrid multi-hop routing algorithm for farmland IoT based on particle swarm and simulated annealing collaborative optimization method[J] Smart Agriculture, 2020, 2(3): 98-107

摘要: 农业无线传感器网络对农田土壤、环境和作物生长的多源异构信息的获取起关键作用。针对传感器在农田中非均匀分布且受到能量制约等问题,本研究提出了一种基于粒子群和模拟退火协同优化的农田物联网混合多跳路由算法(PSMR)。首先,通过节点剩余能量和节点度加权选择簇首,采用成簇结构实现异构网络高效动态组网。然后通过簇首间多跳数据结构解决簇首远距离传输能耗过高问题,利用粒子群与模拟退火协同优化方法提高算法收敛速度,实现sink节点加速采集簇首中的聚合数据。对算法的仿真试验结果表明,PSMR算法与基于能量有效负载均衡的多路径路由策略方法(EMR)相比,无线传感器网络生命周期提升了57%;与贪婪外围无状态路由算法(GPSR-A)相比,在相同的网络生命周期内,第1个死亡传感器节点推迟了两轮,剩余能量标准差减少了004 J,具有良好的网络能耗均衡性。本研究提出的PSMR算法通过簇首间多跳降低远端簇首额外能耗,提高了不同距离簇首的能耗均衡性能,为实现大规模农田复杂环境的长时间、高效、稳定地数据采集监测提供了技术基础,可提高农业物联网的资源利用效率。

知网阅读

[9]毛文菊, 刘恒, 王东飞, 杨福增, 刘志杰 面向果园多机器人通信的AODV路由协议改进设计与测试[J] 智慧农业(中英文), 2021, 3(1): 96-108

MAO Wenju, LIU Heng, WANG Dongfei, YANG Fuzeng, LIU Zhijie Improved AODV routing protocol for multi-robot communication in orchard[J] Smart Agriculture, 2021, 3(1): 96-108

摘要: 针对多机器人在果园中作业时的通信需求,本研究基于Wi-Fi信号在桃园内接收强度预测模型,提出了一种引入优先节点和路径信号强度阈值的改进无线自组网按需平面距离向量路由协议(AODV-SP)。对AODV-SP报文进行设计,并利用NS2仿真软件对比了无线自组网按需平面距离向量路由协议(AODV)和AODV-SP在发起频率、路由开销、平均端到端时延及分组投递率4个方面的性能。仿真试验结果表明,本研究提出的AODV-SP路由协议在发起频率、路由开销、平均端到端时延及分组投递率4个方面的性能均优于AODV协议,其中节点的移动速度为5 m/s时,AODV-SP的路由发起频率和路由开销较AODV分别降低了365%和709%,节点的移动速度为8 m/s时,AODV-SP的分组投递率提高了059%,平均端到端时延降低了1309%。为进一步验证AODV-SP协议的性能,在实验室环境中搭建了基于领航-跟随法的小型多机器人无线通信物理平台并将AODV-SP在此平台应用,并进行了静态丢包率和动态测试。测试结果表明,节点相距25 m时静态丢包率为0,距离100 m时丢包率为2101%;动态行驶时能使机器人维持链状拓扑结构。本研究可为果园多机器人在实际环境中通信系统的搭建提供参考。

知网阅读

[10]黄凯, 舒磊, 李凯亮, 杨星, 朱艳, 汪小旵, 苏勤 太阳能杀虫灯物联网节点的防盗防破坏设计及展望[J] 智慧农业(中英文), 2021, 3(1): 129-143

HUANG Kai, SHU Lei, LI Kailiang, YANG Xing, ZHU Yan, WANG Xiaochan, SU Qin Design and prospect for anti-theft and anti-destruction of nodes in Solar Insecticidal Lamps Internet of Things[J] Smart Agriculture, 2021, 3(1): 129-143

摘要: 太阳能杀虫灯在有效控制虫害的同时,可减少农药施药量。随着其部署数量的增加,被盗被破坏的报道也越来越多,严重影响了虫害防治效果并造成了较大的经济损失。为有效地解决太阳能杀虫灯物联网节点被盗被破坏问题,本研究以太阳能杀虫灯物联网为应用场景,对太阳能杀虫灯硬件进行改造设计以获取更多的传感信息;提出了太阳能杀虫灯辅助设备——无人机杀虫灯,用以被盗被破坏出现后的部署、追踪和巡检等应急应用。通过上述硬件层面的改造设计和增加辅助设备,可以获取更为全面的信息以判断太阳能杀虫灯物联网节点被盗被破坏情况。但考虑到被盗被破坏发生时间短,仅改造硬件层面还不足以实现快速准确判断。因此,本研究进一步从内部硬件、软件算法和外形结构设计三个层面,探讨了设备防盗防破坏的优化设计、设备防盗防破坏判断规则的建立、设备被盗被破坏的快速准确判断、设备被盗被破坏的应急措施、设备被盗被破坏的预测与防控,以及优化计算以降低网络数据传输负荷六个关键研究问题,并对设备防盗防破坏技术在太阳能杀虫灯物联网场景中的应用进行了展望。

知网阅读

微信交流服务群

为方便农业科学领域读者、作者和审稿专家学术交流,促进智慧农业发展,为更好地服务广大读者、作者和审稿人,编辑部建立了微信交流服务群,有关专业领域内的问题讨论、投稿相关的问题均可在群里咨询。

入群方法: 加我微信 331760296 备注: 姓名、单位、研究方向 ,我拉您进群,机构营销广告人员勿扰。

信息发布

科研团队介绍及招聘信息、学术会议及相关活动 的宣传推广

我认为在电动汽车领域,物联网可以运用到以下几个环节:

1应用于制造环节

虽然国内所生产的电动汽车零件具有较大容量、高效率的高电压锂离子蓄电池,但是由于生产技术受限,所生产出来的高电压锂离子蓄电池的一致性不足,面对这种情况国内的电动汽车零件生产商就可以引入无线射频识别技术来管理相对应的产品,从而提高生产的一致性,实现全面的自动化生产运作。

例如可以在进行电动汽车零件以及整车制作过程当中,给原材料植入原材料自身信息的EPC 标签,通过这种标签就可以查询到材料的基本信息,就算原材料被加工成各种汽车部件,标签也不会消失,自然而然制造的信息也就不会消失。除此之外还可以在生产线所有的工作点设置专门的识读器,对重要零部件的生产进行实时的监控,与此同时还能够将原材料的各种信息及时传送到数据中心进行统一的梳理和存储,通过一系列 *** 作车辆即使到达消费者手里,人们也可以通过信息对车辆生产的各个过程进行源头追溯,从而也就保障了汽车生产商所生产出来电动汽车的整体质量。

2应用于售后环节中

汽车生产商将已经生产完成的汽车通过物流运输等方式运输的各地的经销商处,在整个运输和销售过程当中,经销网点和物流信息都将会被纳入到车辆的EPC 标签当中,经销商所销售出的车辆也会将购买者的信息一同录入到车辆的EPC 标签当中,之后这些信息就会被传送到电动汽车制造厂商的数据库当中,制造厂商再将这些信息进行统一的管理,将所有车辆以及车辆当中的所有信息进行集中,进而汇总成电动汽车车辆信息系统。

3应用于充电环节

充电问题是一直围绕着电动汽车所出现的主要问题,但是在未来随着互联网和科学技术的发展,就可以彻底解决电动汽车的充电问题。智能电网系统和传统电网系统的区别就是智能电网系统比传统电网加了物联网技术。

除此之外,智能电网系统还拥有更加先进的电力技术和设施,从而保证可以对整个电力系统进行实时的监测,进而可以实现真正的智能化管理。如果纯电动汽车想要进行充电工作,智能充电设施可以通过延时充电等功能来对电力进行 *** 作。例如在夜晚对电动汽车进行充电,那么将会缓解白天的电网压力,从而进一步的提升电能的使用效率,增加电网系统的节能效果。未来如若电动汽车占据汽车市场的主导地位,那么就可以在电动汽车上装置移动储能设施,对电网进行随时的电能会输工作,从而降低城市和国家的用电压力,节约电力资源,降低能源消耗。

物联网就是物物相连的互联网。这有两层意思:其一,物联网的核心和基础仍然是互联网,是在互联网基础上的延伸和扩展的网络;其二,其用户端延伸和扩展到了任何物品与物品之间,进行信息交换和通信,也就是物物相息。物联网通过智能感知、识别技术与普适计算等通信感知技术,广泛应用于网络的融合中,也因此被称为继计算机、互联网之后世界信息产业发展的第三次浪潮。物联网是互联网的应用拓展,与其说物联网是网络,不如说物联网是业务和应用。因此,应用创新是物联网发展的核心,以用户体验为核心的创新20是物联网发展的灵魂。
新媒体是媒体形态的一种!
现在很多物联网平台采用新媒体来宣传、推广自己等,别的什么关系,也没什么吧
了解物联网你可以多在物联网平台上学习学习,比如:
电子人物联网

物联网的应用实例与效益 摘要 十年前,麻省理工学院在同 EANUCC 组织(全球统一标识系统)共同进行一 个研究项目时,创造了"物联网"一词该项目和全球产品电子代码管理中心的 成立促生了以 RFID 为基础的解决方案, 使供应链发生了革命性的变化 据预测, 到 2005 年,RFID 标识的物体和物联网将会无处不在 物联网的开发是围绕 RFID 的应用进行的,然而依托的技术不仅仅是 RFID物 联网的合理结构是金字塔型的,是根据需要,合理性,局限性和商业应用案例和 效益在身份标识,数据存储和能力上结构分层的,其合理性取决于经济效益,其 特点和行为设计的合理性也取决于实际效益 目录 1 介绍 十年前,麻省理工学院(MIT)与物品编码组织 EANUCC 共同开展了一个研究项 目,创造了物联网一词该项目和全球产品电子代码管理中心的成立促生了以 RFID 为基础的解决方案, 使供应链发生了革命性的变化 采用这种技术和手段, 将使供应链成本降低 10%,还能使我们同家庭中的日常生活物品相互交流在我 们去超市的时候,家里的冰箱会告诉我们缺少些什么,食品自己会告诉我们它们 什么时候过期,商品会自行防盗,我们则不必在超市的收款台前排队这些有说 服力的例子那时让我们预测, 2005 年, 到 RFID 标识的物体和物联网会无处不在 但现在已经 2009 年已经过去了,但我们还在等待会发生些什么为什么我们还 在等待呢物联网的实际效益在哪里呢 从社会经济方面看,保健,环境,合法监听,隐私,安全,技术的获取和包容 以及政府的作用,都将影响到物联网的应用,但未来物联网推广的最重要因素是 商业案例没有商业案例就没有商业 关于物联网的争论,一般是围绕着什么时候技术才会无处不在和遍布各处的问 题进行的,没有考虑如果实现了技术无所不在,那么范围有多大,哪些技术是核 心的问题本文用商业案例推理方法进行讨论,并向一些物联网方面的基本假设 提出了挑战,本文的结论是,物联网的架构实际上与现在的一些假设是不同的, 它更具结构性,更实用,具有金字塔式的通信能力和选择能力,它不是一堆放在 一起通过 RFID 器件互相谈话的物体 2 物联网的概念 MIT1999 年的论文在其网站上已经保留好多年了 所说的"物联网"是"自 MIT 动身份识别中心的愿景", 这个愿景就是创造一个计算机无需人的帮助就能去识 别的全球环境 麦克法兰在上述论文中解释了基于控制的 MIT 自动身份识别的概 念他说: 智能产品是一种物理的,以信息为基础的零售商品,它们 (1)具有独特的身份; (2)能够有效地同周边环境交流; (3)能够保留和存储自己的数据; (4)具有能描述产品特点,生产,使用和处置需求的语言; (5)能持续地参与或决定与产品命运相关的行为 重要的是要注意到,MIT 的研究是针对供应链的,它说的"每个东西都贴上标 签"并不意味着"所有的东西"都贴上标签麦克法兰说的很清楚,它们是以信 息为基础的零售商品花园里的鼹鼠,树上的知更鸟和亚马逊雨林中的树木并不 在这"每样东西"的范畴之内他们所做的切合实际的排除表明,物联网的初始 概念是很清楚的, 是人为限定的, 是有范围的 它只适应于供应链上传送的东西 全球产品电子编码管理中心和 RFID 产业已经认识到, 这种限制会使我们错失良 机,降低物联网的应用范围和影响这与"计算机无需人的帮助就能理解世界" 的概念显然是不相符合的,因为我们不能假定每样东西都是零售商品,这种假定 是不可能的,而且永远不可能现在是根据可能做到的事情重新评价和建立这个 概念的时候了 要建立全面的或局部的物联网,需要有投资,在很多情况下,这种投资的规模 很大只有有了适宜的商业范例,才会有投资而商业范例正是目前所缺少的 3 商业范例假设 物联网不仅是一个学术概念,而且有市场需求,了解这一点是至关重要的 这就是说,物联网是一种真正的颠覆性创新,它能对社会产生巨大影响但物 联网要获得成功, 必须要有实实在在的应用案例, 不能光宣传它如何如何了不起, 或觉得它会带来多大的股票价值 物联网的推广目前还受限于技术,现在可用的技术是 RFID 过去在供应链和其他一些商务模型如资产管理中主要采用一维条形码, 这是 一种综合标识符,不能区分具体的物品两维条形码含有更多的数据,但一旦印 刷上去, 就不能更新 RFID 发射器, 近场通信移动电话, 采用脉冲无线电 (UWB) 通信技术的定位系统, 蓝牙或紫峰无线传感器和其他一些无处不在的计算技术能 持续地从周边环境中采集数据并进行处理, 这些技术可以带来优势的商业应用案 例 虽然物联网的开发是围绕 RFID 的应用进行的, 但构成物联网的是连续和密集的 实时数据流,并不是 RFID 器件本身,物联网是物理世界的反映,同物理世界一 样,物联网用户市场中商务案例的成功是商务推广的先决条件 1999 年开始建立物联网时,MIT 预测,到 2005 年会出现物联网 RFID 标签的无 处不在的应用,到 2006 年,标签的价格会降低到 5 美分学术界的预测总是太 过乐观,从经济学的角度看,这个预测其实是靠不住的 当然,MIT 可以很有道理地指出,今天的标签,比他们当时设想的标签要复杂 多了,但标签设计中任何增加的功能都是用户需要的,没有这样的进步,就没有 投资的效益但价格毕竟决定着设计的合理性,限制着标签的普及应用 如果没人以 MIT 预测的价格大量购买这些标签,就不会有用户应用案例 MIT 所描述的物联网是在超市中无处不在地使用标签,MIT 预计,所有的零售商 品都会贴上标签, 所有的家庭用品和办公用品都会贴上标签, 它们能够相互通信, 至少在询问时能够应答 2003 年,威廉姆斯在《产品标识的未来》一文中指出,当商店中的商品以低于 05 美元的价格促销时,标签的成本无论是 028 美元还是 5 美分,都将是极大 的成本负担,一般会使商品利润低于 10%,在这个价格水平上使用 RFID 标签就 不划算了现在不行,永远都不行把 MIT 所预测的标签价格下降(为达到市场 普及)同预测的标签使用量相比较,可以看出,在很多年内,标签的整体商业价 值很难增长标签厂商投入很大的资金,承担很大的风险,卖出几十亿的标签, 却只能赚到很少的钱标签厂商以现在的价格每年只卖出几百万个标签这种商 业模式是行不通的,而且永远行不通,因为标签制造厂商在目前商业模式的生命 周期内是不会把标签的价格降低到微不足道的水平的 业界预测,聚合物 RFID 标签有可能在 10 年内改变这种状况但是今天你不可 能根据 10 年之后可能发生的事举出商业应用的例子这些实际因素对物联网的 建立和效益的发挥有巨大的影响也就是说,在每件物体上贴上标签,也许只是 一种空想,永远不可能成为现实(我曾经说过,皇帝是没有新衣的) 那么物联网的概念是不是就错了,是不是就一无可取了呢我希望不是尽管人 们提出的物联网的概念和架构有某些缺陷,但它还是有很大的潜在效益的 4 物联网依托的技术不仅仅是 RFID 在可预见的未来建立可行的物联网架构是至关重要的那种认为给遍布各处的 每个物体都贴上 RFID 标签就能形成物联网的观点是经不起实践检验的,是不会 有商业应用实例的在目前阶段,我们必须质疑关于物联网的一些基本假设麦 克法兰提出的物联网概念,至少有两点是站不住脚的,是经不起实践检验的 首先,麦克法兰声称的物联网的目标是"建立一个计算机无需人的帮助就能识 别世界的普遍环境",但他没有从商业应用的角度进行考虑,也就是说,人们为 什么需要这样一种环境我们的问题是,它的应用合理性在哪里难道就因为它 在技术上可行就不去考虑合理和需求吗 如前所述,不是器件,而是连续的,高密度的实时数据流形成了可行的商业应 用案例,赋予了信息系统相关的,实时的,具体的数据,建立了物联网我们必 须清楚地认识到,物联网的商业范例不是 RFID 器件的商业范例,而是合理获取 信息的商业范例,RFID 系统只是一种提供信息的手段,是一种最适宜的,成本 效益最高的技术 第二,对于早先的智能产品概念,麦克法兰虽然提出了 5 个特点,但缺少商业 案例的支持麦克法兰说的 5 个特点是,独特的身份标识,与周边环境交流,存 储数据,使用标准的语言和不断地参与或决定自己生命周期 最后一个特点是要赋予器件智能的原因,其他一些特点是被动存储器件也具有 的,只要它们能被连接 如果你接受这种观点,那么在很多情况下,有效地与周边环境通信,可能就简 单意味着使身份和数据可以被询问, 而这通过被动型的数据存储就能实现 的确, 早期物联网构想中的 RFID 技术,全部是被动型 RFID 标签,这些标签只有在被询 问时才能显示数据,与条形码唯一的不同是,它们的数据存储在集成电路存储器 上,可以被更新,它们不能对自己的命运做出决定所以,麦克法兰的理论不仅 没有清晰的商业案例支持,而且其初始概念在逻辑上就讲不通我们经过思考后 得出的结论是,有些物品需要通信,而另一些物品只需要被询问,有些数据是永 存的,另一些数据是变化的这个结论显然是毋庸置疑的 独特的身份对于物联网来说是非常重要的,但也需要从商业效益的角度考虑问 题多年来,条形码成功地标识了批量身份,但不能标识每个产品的身份把批 量标识扩展到分类标识是必要的,例如标明整批货物中每一件的售出时间但如 果没有必要,如果成本太高,就不需要总是这样做当然在有些情况下,是需要 对每个商品做独特标识的,例如商品的重量,历史等所以,物联网的许多功能 是可以用比较便宜的技术实现的,例如已广泛应用的条形码我们认为,物联网 的合理结构是金字塔型的,是根据需要,合理性,局限性和商业应用案例和效益 在身份标识,数据存储和能力上结构分层的将来许多物品的信息仍然会保存在 条形码上 现在的条形码仅仅是标识类别, 例如某厂商生产的 450 克的烤豌豆 如果用条形码区别标识每件产品, 就不能像现在这样把条形码统一印刷在产品包 装袋上,把这样的产品纳入物联网中,需要确定数量并判断投入的合理性 在每个产品上应用 RFID 技术现在有很好的例子例如,英国著名的玛莎百 货公司用这种技术减少了正品商品退货的欺诈率,在这种情况下,商品价格稍高 一点是合理的另一个例子是在刮脸刀片上安放防盗窃的电子商品监测 EAS/RFID 标签,从商业效益上看也是合理的按日期销售的信息是非常重要的 信息,新鲜食品可以在物联网世界中找到新的市场机会,可以存储在零售商的货 架上, 可以找到潜在的家庭和办公室最终用户, 也可以找出产品的新特点和用途, 让产品销售的压力不全放在既定用户身上,另外还能给冰箱制造商做广告,促进 冰箱的销售在物联网世界中,市场营销也能产生实实在在的效益,消化 RFID 的成本 例如, 葡萄酒和灌装啤酒的厂商由于与销售市场更接近, 可以降低价格, 从而消化标签的成本不过我们必须做出示范例子,才能在物联网中推广 5 物联网的结构 如果你接受现在的观点,那么就会顺理成章地得出这样的结论,即只有需要 通信的东西才会装上通信器件在上述金字塔的顶端,是人与人之间的对等机器 交流,例如我的个人数字助理和你的计算机之间的交流,在采用对等设备成本上 不划算的地方则布置 RFID 标签,因为 RFID 标签是满足基本通信需求的成本最 低的手段, 这是第二个层次, 在这个层次之下, 是被动型的数据存储, 如条形码, 它只能保存数据和身份,在这个层次,很多东西仍然是不可辨认和不可识别的 我们定义的未来的物联网还有一点与麦克法兰的提法不同,麦克法兰认为, 物体"能连续地参与和决定自己的命运",我们则认为,只有在感知物体直接或间 接地发出指令的时候(在金字塔的顶端) ,或智能物体发出指令的时候(在第二 层次) ,才会有通信即便在第二层次,智能物体一般也是由一个感知器件控制 和预先决定的(在物联网中,所有的东西,包括人,都是物体) ,因为只有更高 的层次,才能做出判断效益的决策 所以,物联网是在一个个案例的基础上运行的,由感知物体从成本上逐个判 断,处理代价是否能适合需求,物联网是由这些案例构成和限制的 物联网中的商务案例是靠 RFID 标签,智能标签或智能卡运行的静态信息 如产品身份,重量,售出时间,产地等,可以存储在条形码上,也许是两维条形 码,用移动设备和漫游设备可以阅读条形码 我们不需要给每个物体都装上主动通信的器件, 我们要做的是提高阅读器扫描被 动信息的能力,如扫描条形码,使我们在询问时能获得信息,这样做是因为我们 有应用案例的强大支持我们很多人已在超市使用自我扫描技术付账了,许 多移动电话都能阅读条形码虽然让冰箱通过 RFID 标签自动向超市询问存货和 自动付账听起来很有吸引力, 但其实还有一些更为廉价的方法能达到同样的效果 许多此类物联网可以用手动扫描条形码的方式实现,例如,用扫描器把冰箱 里的食品显示在冰箱上的屏幕上屏幕上还可以显示食品的售出时间,发出过期 报警如果超市的付账柜台上也储存有售出日期的信息,就可以用现在的 Wi-Fi (无线保真)技术把这些信息传送到用户的个人数字助理和电话上,用户的冰箱 上或家庭电脑上,也可以传送到家里各处放置的,不见得放在冰箱里的已购买的 食品上 我们所提出的物联网的架构是这样的,它并不是把世界上所有的物体都以对 等的方式连接在一起,而是给有些物体贴上 RFID 标签,有些物体贴上条形码 在我们的物联网架构中有些物体有询问能力, 还有些物体则仍然处于未连接状态 物联网的主要功能是处理信息,这些信息的获得并不完全靠 RFID 标签当 然 RFID 标签将会发挥作用,但 RFID 提供的信息只是物联网的一个组成部分 在物联网中, 不是简单地给每件物体都做出身份标识 我们把物品分成了若干类, 这种分类构成了前述的金字塔梯级结构, 每个梯级采用的信息获取和发送技术都 是不同的也许我们可以给出这样的梯级结构: A 级:带有一般的固定静态数据的物品(如一听西红柿) B 级:带有分类静态数据的物品(如标有售出日期的生菜) C 级:带有独特的固定静态数据的物品(如标有特别分量,产地和保质期的一片 肉) D 级:带有可变综合静态数据的物品(如带有温度感应器的冷冻食品综合标识包 装) E 级:带有可变分类静态数据的物品(如运载箱装商品的货盘) F 级:带有一般临时静态数据的物品(如卡车载的货) G 级:带有可变独特静态数据的物品(道路通行费标签;带有温度感应器的独特 标识的物品) H 级:带有分类可变数据的物品(如车辆) I 级:带有特殊可变数据的物品(如冰箱,音响系统,中央空调,房间报警系统, 车辆等) J 级:智能物品(如计算机,个人数字助理) K 级:有感知的物体(例如人) 这样的分类,是按本文的思路提出的,并不能算是正式的分类下图所示为 物联网的金字塔架构: 我们并不打算把世界上的每个物体都标识在这个金字塔架构图中世界上的 大多数物体—田野里的树木,沙滩上的躺椅,树上的鸟儿等都是不需要通过物联 网来交流的在可预见的未来,现实世界中的大多数物体都不会连接在一起在 物联网中,我们可以把这些物体称为未标识类物体 从金字塔的底部上行, 我们会发现, 紧邻底层 A 的那几个层次中的物体可以被识 别,但是被动式的,这些物体被询问是可以应答,但不能主动通信B,C,D 层次中的物体一般是用条形码标识的,B 层次是简单的综合标识,例如一听西红 柿C 层次是类似瓜果梨桃一类的物品,它们往往有同样的身份,但售出日期不 同 层次的物品是有单独特点的, D 例如每个产品都有不同的重量 在物联网中, 我们可以把这一层次中的物品叫做被动可标识物品增加的信息都不是特殊的, 产品的重量是不变的这一层次中使用的 RFID 标签都是被动型标签 E 层次的数据来自传感器,传感器是被动的,在询问时可以应答,但如果某 些参数(例如温度)超出了规定的限度,也能主动通信,我们把 E 层次的物品叫 做具有激发通信能力的物品, 当然只有在成本效益合理的情况下才采用这种技术 这些物品的数据可变但也是被动的,不过与 D 层次中的可变被动数据(例如一 公斤香肠)完全不同 D 层次和 G 层次的物品都有组合的数据,D 层次中是综合的可标识物品,G 层次中的是特殊的可标识物品例如,道路通行收费标签可在车辆行程的入口和 出口被读出 这两个层次的物品一般不能通信, 它们往往是被询问时才做出反应, 但不能排除它们具有通信功能我们把这种物品叫做"载有其他物品数据的物品" H 层次的物品则不仅有独特的身份,而且有独特的寻址功能,它们能主动通信, 也能对询问做出反应,可能还可以处理大量的瞬间变化数据智能汽车就是一个 例子我们把这个层次的物品叫做"为其他物品服务的物品" 在金字塔的顶端,是真正的智能器件,如计算机或有感知的物体(例如人) , 这些物体有能力主动通信和主动询问 智能物体和感知物体之间的根本区别在于, 智能物体的运行决定是由感知物体控制的,或者说,智能物体的行为是由感知物 体(例如人)设定的所以,在物联网金字塔的顶端,总是感知物体在控制,不 是物品自己做自己命运的决策这种理解与 MIT 最初的概念是根本不同的我 们认为,只有采用这种梯度层次架构,物联网才能产生合理的实际效益,才能获 得投资 我们当然可以做出不同的分类,分出不同的级别,但问题的关键不在这里 关键是物联网不会,而且永远不会成为和人与人之间的网络一样的,具有自主意 识的网络(采用 RFID) ,物联网将是一个由具有不同特性和能力的物品组成的一 个梯度分层架构;它的性质是由应用案例和实际效益决定的,采用的技术是否合 理也是由实际效益决定的(有时只能用 RFID) 所以,在物联网中采用 RFID 的具体效益是反映在多个结构层次上的,其合 理性取决于济效益,其特点和行为设计的合理性也取决于实际效益(尽管可 能会有额外的下游效益,或以后会发现效益,但这不属于初始的效益) 物联网 中物品能力的合理性也是由具体的效益决定的 物联网本身是不会产生什么奇幻 的济效益的,世界上的许多物品将仍然处于物联网之外 6 结论 为发挥物联网的潜在效益,需要着重注意新型的因特网和已有数据的 *** 控,而 数据的传输技术,虽然很重要,却是次要的考虑因素需要制定物品层次之间交 流的规则,需要开发数据采集/交换/交易的网络服务如果物联网有一天真的出 现了,那么首先要关注的是数据管理,转换和处理的标准,而不是什么特殊的空 间接口总之,尽管 RFID 在物联网中有重要作用,但它毕竟只是物联网中的一 种数据传递技术,要形成商业市场,就要开发产品(软件系统) ,使因特网中的 物品能动起来,我们要更多地关注使物联网具有交流功能的网络服务我们需要 有标准化的服务标准制定组织,如 CEN,ISO,ETSI,应发挥重要作用


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/13484269.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-08-16
下一篇 2023-08-16

发表评论

登录后才能评论

评论列表(0条)

保存