无线通信发展经历了一百多年的历史,在这过程中,产生了不少新的技术的同时,又在不断地与其他技术进行综合,从而不断地涌现出一系列的通信方式,在适应不断提高的社会需求同时,自身也得到完善和发展。
从无线电通信发展全过程来看,不难看出,无线通信大致可分为3个重要发展阶段:20年代~30年代的短波通信,50年代~70年代的微波接力通信(含卫星通信),80年代~现在的移动通信。
现仅就当今发展最为迅速,系统最为复杂,而又是热门话题的移动通信技术的发展趋势进行叙述。
截止20xx年7月,全世界的移动用户数量已经突破50亿户,预计今年该数字将突破60亿。
移动通信之所以得到快速发展主要是其不受任何时间、地点限制地实现了对象之间的通信。
从设备组网的角度看,移动通信网络可以看成是有线通信网的延伸,它由无线和有线两部分组成。
无线部分提供移动用户终端的接入,其包括数据交换、用户管理、漫游、鉴权等大部分网络功能的实现还是通过固定网络来实现的。
1移动通信发展史
70年代中期至80年代中期。
这是移动通信蓬勃发展时期。
1978年底,美国贝尔试验室研制成功移动电话系统(AMPS),建成了蜂窝状移动通信网。
根据移动通信的发展史,其发展历程和发展方向,可以划分为3个阶段:
1)第一代——模拟蜂窝通信系统
70年代末至80年代中期是移动通信技术得到了较快发展。
1978年底,美国贝尔试验室研制成功高级移动电话系统(AMPS)并建成了蜂窝状移动通信网,也即是第一代移动电话网,采用的是蜂窝组网技术。
美国第一个蜂窝系统AMPS(高级移动电话业务)在1979年成为现实。
因为传输技术条件的等的限制,第一代可移动电话用户不能实现长途漫游,也就是说移动电话用户只能在一定区域范围内实现移动通信,除此之外,该系统还存在着诸如系统容量不足、系统间互不兼容、通信质量不好、保密性不强、不能提供数据传送业务等致命的弱点,因此,第一代模拟蜂窝移动通信最终被第二代的数字蜂窝移动通信所替代。
但在该组网技术仍在下一代系统中得以应用。
2)第二代——数字蜂窝移动通信系统
为了克服第一代模拟蜂窝通信系统的各种缺点,20世纪80年代中期到21世纪初,数字蜂窝移动通信系统得到了大规模的应用,其代表技术是欧洲的GSM和美国的CDMA,也就是通常所说的2G(即第二代数字蜂窝移动通信系统)。
第二代数字蜂窝移动通信系统主要采用的是时分多址技术TDMA(TimeDivisionMultipleAccess)或者是窄带码分多址CDMA(CodeDivisionMultipleAccess)技术。
TDMA系列最有代表的是泛欧GSM、美国D-AMPS和日本PDC;窄带码分多址(N-CDMA)系列主要是以高通公司为首研制的基于IS-95的N-CDMA(窄带CDMA),是目前广泛应用的技术,它的应用技术标准叫做IS-95,是美国在1993年发布的N-CDMA标准,现在已成为常用的国际标准。
2移动通信的特点
移动通信是基于终端用户处于移动状态的通信方式。
它具有如下有别于有线通信的特点:
1)由于用户位置的不确定性,它跟通信中的基站必须使用无线电波来传输信息。
由于电波是沿直线传播的,受移动台不断移动、障碍物遮挡、地形和地物的影响会使电波多径传播而造成多径衰落和阴影效应等影响,严重干扰了移动通信的质量。
2)移动通信是在强干扰的环境下工作的,主要干扰包括互调干扰,邻道干扰和同频干扰等;
3)通信容量有限。
频率作为一种资源必须合理安排和分配,为缓和用户数量大和资源有限的矛盾,除开发新频段之外,还采取了有效利用频率的各种措施,加压缩频带、缩小波道间隔、多波道共享等,即采用频谱和无线频道有效利用技术;
4)通信系统比固定网复杂得多。
因为用户随时移动位置等原因,通信系统需要具备根据信号的强弱来进行通信信道的切换、频率和功率控制、地址登记、越区切换及漫游存取等跟踪技术。
这就使得移动通信系统的信令的设计要比固定网要复杂得多。
在入网和计费方式上也有特殊的要求;
5)对移动台的要求高。
移动台长期处于不固定位置,外界的影响很难预料,这要求移动台具有很强的适应能力。
此外,还要求性能稳定可靠、携带方便、小型、低功耗及能耐高、低温等。
同时,要尽量使用户 *** 作方便,适应新业务、新技术的发展,以满足不同人群的使用。
这给移动台的设计和制造带来很大的困难。
3移动通信的发展趋势
技术的创新从本质上来说就是为了不断满足人们日益增长的需求。
在过去的几十年中,移动通信无论是技术上还是业务上都得到了长足的'发展,这些变化也正极大地改变着人们的生活和工作方式。
随着全球一体化进程的加速和人们生活水平的不断提高,如物联网等新技术的发展等等,人们对未来移动通信技术将提出更多更高的需求。
尽管数字蜂窝移动通信技术也在不断的得到完善,但随着用户数量和网络规模的不断扩大,可以预见的是,在这快速增长的市场需求下,频率资源已经成为瓶颈,通话质量不尽人意,传输速率不高,达不到真正意义上满足移动多媒体和物联网的需求。
综上所述,我们大致可以预见未来的移动通信技术将沿着以下几个大的方向改善:1)随着网络业务数据化、分组化程度的提高,移动互联网逐步形成;
2)为了解决频率枯竭的问题,移动通信将应用于更高的频段,频率利用率也将得到很大程度的提高;
3)随着人们个性化需求的不断提高,提供个性化服务将成为业务发展的一个趋势,为此,网络设备的智能化和小型化也将成为必然;
4)在目前信息通信技术大融合的背景下,移动网和固定网、移动网和互联网的融合已成必然,网络和业务的融合将成为趋势,移动互联网的普及也将成必然;
5)随着全球化进程的进一步提高,视频移动业务将越来越普及,高速率、高质量和低费用是下一步市场对移动业务提出的更高要求。
目前世界上大多还在沿用着第二代数字蜂窝移动通信技术,第三代移动通信技术(3G)也在逐步推广当中,但源于更多的需求,人们早已提出了第四代移动通信技术(4G)的设想。
4G标准比要比上一代具有更强的功能。
31第三代数字移动通信系统
第三代移动数字通信系统(3G)是在第二代的基础上进一步演变的以宽带CDMA技术为主移动通信技术,能同时提供语音数据综合服务和移动多媒体服务的移动通信系统,是一代有能力彻底解决第一、二代移动通信系统主要弊端的先进的移动通信系统。
为了在移动通信领域适应高速数据和图像电信业务的发展,并企望在第三代系统中统一标准,国际电联(ITU)进行了多方面努力。
于2000年5月确定W-CDMA、CDMA2000和TD-SCDMA三大3G标准,并写入3G技术指导性文件《2000年国际移动电信计划》(简称IMT-2000),2007年10月19日,在国际电信联盟在日内瓦举行的无线通信全体会议上,经过多数国家投票通过,WiMAX正式被批准成为继WCDMA、CDMA2000和TD-SCDMA之后的第四个全球3G标准[2]。
与前两代移动通信相比,第三代数字移动通信是一种能够覆盖全球的多媒体移动通信。
它具有别于上两代移动通信的两个主要特点是:
1)可实现全球漫游,使任意时间、任意地点、任意人之间的交流成为可能。
也就是说,每个用户都有一个个人通信号码,无论该用户走到世界任何一个国家,人们都可以找到你,而反过来,你走到世界任何一个地方,都可以很方便地与国内用户或他国用户通信,与在国内通信时毫无分别;
2)能够实现高速数据传输和宽带多媒体服务。
也就是说,用第三代手机除了可以进行普通的寻呼和通话外,还可以上网读报纸,查信息、下载文件和;由于带宽的提高,第三代移动通信系统还可以传输图像,提供可视电话业务。
从这两年的情况来看,随着终端手机设备的智能化发展,使得3G业务越来越多的在人们的生活中体现,如WAP业务,多媒体消息业务,定位服务业务,OTA下载业务等新兴业务得到了长足的发展。
中国3G牌照已经花落三家,分别是:TD—SCDMA中国移动(中国技术)、WCDMA中国联通(欧洲技术)、CDMA2000中国电信(美国技术)。
随着运营商竞争压力的加剧,可以预见的是我们消费者将享受到更好的新兴3G业务服务和更多的资费优惠。
32第四代移动通信技术
尽管历经多年的研究开发,第三代移动通信在实际应用中还是碰到了很多问题,因此人们又开始把希望寄托到了提前出现的第四代的研究。
到目前为止,第四代移动通信技术(4G)技术还只是较多地停留于概念性的设想上,人们可以称之为广带(Broadband)接入和分布网络,也可无线互联网技术或后3G技术,在4G的定义上,人们还无法就其技术参数、国际标准、网络结构、乃至业务内容给出一个标准。
但其大致的轮廓已经得到了业界的共识。
展望未来,我们可以大致看到4G通信将具有如下的特征:
1)信息传输速率更快
人们研究4G的初衷是为了解决移动终端快速访问互联网的问题,变为现实的4G在应用上应具备更快的无线通信速度。
从目前已经公布的数据来看,4G最大的数据传输速率超过100Mbps,而3G网络只有2Mbps。
2)网络频谱更宽
要想提高信息的传输速度,4G网络中所需要带宽要比3G网络高出许多,估计达每个信道的带宽会达100MHz,是3G20倍。
3)容量更大
据估计,10年后,人们每天所获取的信息量要比今天至少高3-4个数量级,而3G的容量将远无法满足这种增长的业务量需求,所以,在4G里将采用新的网络技术来极大地提高系统的容量,如SDMA(空分多址)技术等,来满足未来大信息量的需求。
4)兼容性强
要使4G通信尽快地被人们接受,4G应考虑在投资最少的情况下轻易地过渡到。
因此4G将采用大区域覆盖、多种网络相互兼容、终端及网络升级过渡容易等特点。
实现真正意义的全球漫游。
5)智能性更高
4G系统的智能化程度更高。
在网络系统功能方面,能够做到自适应地进行资源分配、处理变化的业务流和适应不同的信道环境;在其用户终端的设计和 *** 作也将更具智能化,它已经不是传统意义上的手机,它可以被当成手提电视,能够综合各方面因素来提醒它的主人此刻该做什么或者不该做什么。
它将能够实现许多现在人们无法想象的功能。
6)能实现更高质量的多媒体通信
4G通信将能在很大程度上改善现有3G多媒体通信存在的品质不良,数据传输速率不高的不足,为各种多媒体流的高速高质量传送提供可行的解决方案。
7)通信资费更加便宜
由于兼容性问题的解决和平滑性过渡的实现,4G的通信部署相比其他技术将显得容易和迅速得多。
这样就能够有效地降低运营成本,竞争的白日化将让人们享受到更加便宜通信资费。
对于现在的人来说,未来的4G通信的确显得很神秘,但技术的发展将使4G通信变成现实。
实现3G未能实现的功能,实现真正意义上的个人通信。
4结论
随着信息时代的到来,人们越来越依靠移动通信带来的便利。
可以设想不需要多少年,我们将会迎来一个真正的综合性的、宽带域、多功能、可以随时随地满足人们多角度、全方位需求的通信方式。
参考文献
[1]王文博移动通信原理与应用[M]北京邮电大学出版社,2004
[2]常永宏第三代移动通信系统与技术[M]北京:人民邮电出版社,2004
[3]谢显忠,等基于TDD的第四代移动通信技术[M]电子工业出版社,2005
网络流量建模有着广泛的应用。在本文中,我们提出了网络传输点过程(NTPP),这是一种 概率深层机制 ,它可以模拟网络中主机的流量特性,并有效地预测网络流量模式,如负载峰值。现有的随机模型依赖于网络流量本质上的自相似性,因此无法解释流量异常现象。这些异常现象,如短期流量爆发,在某些现代流量条件下非常普遍,例如数据中心流量,从而反驳了自相似性的假设。我们的模型对这种异常具有鲁棒性,因为它使用时间点流程模型有效地利用了突发网络流量的自激特性。
在从网络防御演习(CDX)、网站访问日志、数据中心流量和P2P流量等领域收集的7个不同的数据集上,NTPP在根据几个基线预测网络流量特性(从预测网络流量到检测流量峰值)方面提供了显著的性能提升。我们还演示了我们的模型在缓存场景中的一个应用程序,表明可以使用它来有效地降低缓存丢失率。
对新型网络应用和系统的需求日益增长, 使得网络流量行为更加复杂和不可预测 。例如,在数据中心网络中,流量微爆发源于应用程序[1]的突然流行,而在副本[2]间的信息同步过程中产生的大象流会在骨干网络上造成临时的负载不均衡。另一方面,由于不同的终端用户活动模式[3],诸如多媒体流媒体和视频会议等流量密集型应用导致了蜂窝网络和移动网络上的巨大流量差异。这种流量差异影响最终用户应用程序[4]的体验质量(QoE)。此外,随着基于Internet小型计算机系统接口(iSCSI)的分布式存储[5]和物联网(IoT)应用[6]的大规模地理分布式云存储同步的迅速普及,网络流量变异性成倍增加。各种安全攻击,如分布式拒绝服务攻击(DDoS),加剧了流量模式预测[7]的假阴性问题。
由于应用范围的多样化,短期和长期的流量爆发在各种类型的网络中都很常见;因此,研究人员探索了不同的 基于突发周期性假设 的流量突发预测技术,如 流量矩阵[8]的部分可预测性 、 张量补全方法 [9]等。然而,最近网络流量的高度不均匀性 使这种流量突发周期性的假设失效,并导致了明显的流量差异和多重分形流量变化 ,这需要单独的检测工作。这种交通差异和多重分形的例子包括数据中心或或ISP骨干[11]网中流量的突发峰值(微突发)[10]、多媒体应用的流量(如视频流媒体)[12]、存储同步[13]、恶意或攻击流量(例如物联网设备中的DDoS攻击)[7]。因此,需要开发一个流量事件预测模型,该模型可以捕获诸如流量突发、突发峰值、主机带宽使用的意外跳变等流量差异和多重分形流量变化。
在这项工作中,我们旨在 将差异性和可变性检测集成到网络流量建模中 ,从而为高度异常的网络流量提供统一的模型。为此,我们按照单独的网络主机(例如数据中心服务器或终端用户设备)的传输特性来分解流量预测问题,在此我们着重于总网络带宽的份额每个主机使用的时间,称为给定时间的“优势”。为此,我们提出了网络传输点过程(NTPP),它是一种基于时间点过程机制的深度概率机制。 NTPP首先使用 循环标记时间点过程 (RMTPP)表征主机突发流量产生的事件[14],该过程结合了主机的影响以根据可用带宽转发流量突发。此外,我们使用一组学习来对任意给定时间内对网络中不同主机进行排序的模板进行 排序 ,从而对不同主机之间的争用进行建模,其中主机的排序由其生成的通信量决定。这些模板提供了各种方法来评估一对主机的相对顺序,这些顺序是由它们的争用过程引起的。这些措施,连同底层的包传输过程,确保在整个时间窗口内主机之间的正确排序。为了了解传输动态以及排名的变化,我们将给定主机的观测传输时间的似然性最大化,并结合学习对模板进行排名的其他措施进行统一。这种额外的小工具使我们的模型能够预测意外的峰值,带宽使用量的跳跃,否则很难追踪(实验着重证明了这一点)。
我们根据来自不同域的 七个 真实数据集上的几个最新基准评估了我们的系统,这些数据集可能会显示异常流量。其中四项是从各个组织进行的网络防御演习中获得的,一项是从网站访问日志(1998年世界杯Web服务器)获得的,另一项是从数据中心流量的获得的,另一项是从BitTorrent网络获得的。我们观察到,在预测主机流量方面,NTPP的平均性能比最具竞争力的基准好11%,而在检测主机带宽消耗的突然跳升或峰值时,NTPP的预测精度提高了约25%。我们还使用基于NTPP的模拟器实现了下游缓存应用程序,并且观察到缓存未命中率降低了约10%。
贡献 :
(1) 复杂包传输过程建模 :我们设计了NTPP,这是一个多主机网络流量动态的非线性随机模型,能够准确地捕捉到包传输过程中攻击性跳跃和不规则行为的存在。此外,与现有的离散时间流量模型(如[9]、[15])相比,我们使用了时间点过程的连续时间特性。
(2) 主机间的争用建模 :我们的NTPP方案利用了[16]中提出的产品竞争建模思想,将丰富的学习文献与网络流量建模联系起来,对[17]其进行排名。
(3) 预测能力 :NTPP不仅具有理论基础,而且具有实践效果。我们的模型能够比几种最先进的基准更有效地预测分组传输动态。此外,嵌入式鉴别模块有助于实时估计带宽消耗的突然变化,这是一个至关重要的实际挑战,所有基准都无法追踪。
(4) 下游应用 :我们演示了NTPP在下游缓存场景中的应用,突出了它的实用性。现有的原始内容缓存由于突发的流量而存在较高的缓存丢失率,而我们的模型支持的智能内容缓存通过根据不同主机的预测流量为它们保留不同数量的内存空间来实现更好的性能。
从历史上看,大量的工作集中在从各种不同的角度对万维网流量进行建模,使用各种分布模型,如泊松、帕累托、威布尔、马尔科夫和嵌入式马尔科夫、ON-OFF等。随着互联网的发展和各种Web服务的引入,提出了更复杂的模型,如马尔科夫调制泊松过程[19]、马尔科夫调制流体模型[20]、自回归模型[21]、流量矩阵[8]的部分可预测性、张量补全方法[9]等。然而, 这些模型只能捕获特定类型的网络事件,而不能泛化为捕获Internet流量中的不同流量差异和变化 。在另一个独立的线程中,研究人员将互联网流量爆发建模为一种显示自相似性[22]的现象。然而,许多工作23],[24]也质疑“自相似性”的假设,特别是在互联网骨干网中,从多个来源的流量会得到多路复用。
随着大规模数据中心、基于物联网的平台、蜂窝网络和移动网络、信息中心网络等领域的出现,互联网流量的性质发生了巨大变化。因此,出现了各种领域特有的模型,如数据中心[15]的流量微突发预测、流量异常检测[25]、物联网流量表征[26]、互联网社交事件预测[27]等。此外,由于网络流量在不同的差异和变化下具有不同的性质,最近的一些工作探索了基于机器学习的技术来预测流量模式[12]、[28]、[29]中的不同事件、异常和不一致性。然而, 这种预测模型是针对特定的网络系统设计的,缺乏通用性 。
在本节中,我们将制定NTPP,即所提出的模型(参见图1),该模型捕获了网络流量动态的两个主要组成部分—(i)集体包传输机制和(ii)多个主机之间的争用。在一开始,NTPP是由一种基于点过程的深层概率机制驱动的——点过程是一种特殊类型的随机过程,它自然地捕获了连续数据包到达背后的机制。此外,它还包含一个判别模块,该模块包含一系列对函数[17]进行排序的学习,专门设计用于建模主机间争用过程。接下来,我们将从时间点过程的概述开始,详细描述它们,然后描述学习和预测动态的方法。
互联网+商场=天猫
互联网+旅行社=携程
互联网+出租车=滴滴
互联网+餐厅=美团
那么,
互联网+ 汽车 =
未来的世界必定是万物互联的世界。 汽车 行业的未来,在于将车辆与存储在云中的几乎所有物体连接起来。也就是这题的答案:车联网!
车联网即 汽车 移动物联网,是指利用车载电子传感装臵,通过移动通讯技术、 汽车 导航系统、智能终端设备与信息网络平台,使车与路、车与车、车与人、车与城市之间实时联网,实现信息互联互通,从而对车、人、物、路、位臵等进行有效的智能监控、调度、管理的网络系统。
车辆具有高移动性,网络信号具有动态性,自动驾驶 汽车 在行驶过程中需频繁的信息交互。为车与路、与车、与人、与城市建立一个低延迟、抗干扰能力强的无线通信环境就显得十分必要。通信技术是车联网的关键核心技术,决定了车联网信息传输的实时性和有效性。在这边文章里,我主要就 汽车 发展过程中无线短距离技术进行探讨。
一、无线技术在 汽车 制造业中的发展
伊始,应用在 汽车 行业的无线技术是红外通讯技术(IR)。红外通讯技术是无线通讯技术的一种,该技术不需要实体连线,简单易用且实现成本较低。红外通讯技术有着传输距离短、传输速率不高等不足,在 汽车 行业的使能有限,仅仅应用在无线锁定方面。
后来,业界采用了安全加密的射频技术(RFID),RFID射频识别是一种非接触式的自动识别技术,它通过射频信号自动识别目标对象并获取相关数据,识别工作无须人工干预,可工作于各种恶劣环境。该技术使 汽车 行业实现了自动车库门与 汽车 的门锁打开或关闭。
然后又采用了蓝牙技术——一种短距离无线通信技术。蓝牙技术使得现代一些便携的移动通信设备,能够实现无线上因特网,增加了用户的便利性和舒适性。用户可以通过无线方式打开或关闭电器,如加热器和空调。后来,它成了信息 娱乐 系统的一个关键功能。蓝牙连接可以传输高质量的音频,乘客可以将手机等便携式设备连接到 汽车 上,从而收听他们喜欢的音乐。但蓝牙功能并不能通过连接的应用程序向用户提供关于车辆运行的外在及内在环境信息。
而后就是Wi-Fi,Wi-Fi是一种能够将个人电脑、手持设备(如Pad、手机)等终端以无线方式互相连接的技术。Wi-Fi为屏幕投影技术提供了一个强大的数据管道,使驾驶员可实现从智能手机到他们自己的 汽车 的无缝连接。
智能交通概念
二、无线技术在车联网中的应用
National Instrument公司的 汽车 营销负责人Jeff Phillips表示,“车载通信(V2X)需要一个框架来满足连接协议和传感器控制算法相关的快速扩展的合规性和认证要求。”V2X通信涵盖车辆对车辆(V2V)、车辆对基础设施(V2I)两种通信方式。
1 V2V通信
行驶的车辆可通过V2V通信向他驾驶员发出自己的意图并警示他们前面有危险。从而有关道路状况的更多信息可以用于管理和控制交通。
例如,如果一辆 汽车 突然因躲避障碍物而抛锚,它可以向附近的车辆发送无线信息,告知它们情况。然后,这些车辆可以减速或相应地改变车道。V2V为车辆驾驶提供了更高的安全等级。它是IEEE80211 Wi-Fi协议的重新设计一种形式,具有更低的延迟性和更高的安全性。
车载环境中的无线接入(WAVE)IEEE80211p工作频率接近59GHz,并支持高达27 Mbps的数据速率。为了扩大通信范围,过往车辆接收到的讯息可以V2V通讯在WAVE上传送。使用蓝牙的路边信标可以传递关于本地特色的信息。对于使用该车内置的Wi-Fi在互联网上寻找此类信息的人来说,十分便捷。
2 V2I通信
V2I通讯向路边管制员提供有关车辆状况的最新资料。交通信号灯向车辆发送信息,告诉它们何时可能改变状态,通过交叉口的车辆又将信息传递给接近路口的车辆。整体来说,减少了刹车的磨损, 节省了燃料。
在未来,无线信号可以显著改善自动驾驶车辆的流量。交通信号灯可以监控路口的安全状况,并调节交通。
V2I可以和许多安全应用程序、数字标志板、传输位置信息和蜂窝远程通信进行通信,以共享有关交通状况的信息以减少拥堵。
车联网项目可以将蓝牙、Wi-Fi和全球导航卫星系统(GNSS)等其他无线技术与先进的3G/4G LTE技术结合起来。可提供提供媒体流、停车辅助、3D导航,以及语音识别、面部识别等功能。
比如说高通(Qualcomm)的SnAPGROAND 602A处理器和调制解调器提供优秀的无线解决方案。处理器在支持鲜今技术的同时,也可应用未来的无线网络。高通Halo WEVC是一个能源充电的解决方案。高通9150 C-V2X芯片组是一种基于3 GPP规范发布的蜂窝V2X解决方案。简单来说,就是将车辆停在一个指定的地面充电垫进行充电。
再比如SnAPGROAND和Atlas 7处理器提供基于卫星的地理位置映射信息,并支持BREW开发系统、GPS、GLONASS和Galileo。
联网 汽车 概念
三、基于数字数据的高效道路导航
用于 汽车 的无线技术包括蓝牙、GPS、Wi-Fi、RFID等。无线通信使得驾驶员可以精确定位并以低延迟传输信息以进行有效导航。
现代导航技术使用户能够使用GPS/GLONASS系统轻松导航。这些系统通过智能手机应用程序来告知司机路线,且可提醒司机前方道路的危险状况,发生事故时可启动紧急情况警报。如此便加快了救援行动,保持了道路通畅。
盗窃警报是车联网的附加安全选项。车载通信提供了停车场的安全认证和信息。
物联网结合智能传感器技术,可提供有效的库存管理,以及连接车辆的服务和维修计划。为特定应用程序设计的传感器检测备用设备的状态,并向服务提供商发送警报,然后服务提供商可以安排维修工作。
汽车 导航系统
今天的无线技术是安全、可靠、高效和方便的。我们可以使用Wi-Fi、蓝牙等通信将智能手机和其他智能设备与 汽车 进行连接。将移动设备与信息 娱乐 系统配对,信息 娱乐 系统响应语音命令,用户在开车时就可以解放双手来接听电话。
汽车 进入网络,车联网诞生。物联网和新的通信网络为智能驾驶提供了有效的管理,在不久的未来,车辆将与其周围的几乎每一件实物于云中连接起来。
码分多址蜂窝移动通信系统CDMA技术的优点及问题及越区切换
由于CDMA技术本身所固有的许多特点,使它非常适合于数字蜂窝移动通信系统。它的优点主要表现在如下10个方面。
1语音激活技术
统计结果表明,人们在通话过程中,只有35%的时间在讲话,另外65%的时间处于听对方讲话、话句间停顿或其他等待状态。在CDMA数字蜂窝移动通信系统中,所有用户共享同一个无线频道,当某一用户没有讲话时,该用户的发射机不发射或少发射功率,其他用户所受到的干扰都相应地减少。为此,在CDMA系统中,采用相应的编码技术,使用户的发射机所发射的功率随着用户语音编码的需求来作调整。当用户讲话时语音编码器输出速率高,发射机所发射的平均功率大;当用户不讲话时语音编码器输出速率很低,发射机所发射的平均功率很小,这就是语音激活技术。在蜂窝移动通信系统中,采用语音激活技术可以使各用户之间的干扰平均减少65%。也就是当系统容量较大时,采用语音激活技术可以使系统容量增加约3倍,但当系统容量较小时,系统容量的增加值要降低。在频分多址、时分多址和码分多址三种制式中,唯有码分多址可以方便而充分地利用语音激活技术。如果在频分多址和时分多址制式中采用语音激活技术,其系统容量将有不同程度的提高,但二者都必须增加比较复杂的功率控制系统,而且还要实现信道的动态分配,其结果必然带来时间延迟和系统复杂性的增加,而在CDMA系统中实现这种功能就相对简单得多。
2扇区划分技术
扇区划分技术是位于蜂窝小区中心的基站利用天线的定向特性把蜂窝小区分成不同的扇面,如下图所示。常用的方式有
利用120°圆形覆盖的定向天线组成的三叶草形无线区(图(a));利用60°扇形覆盖的定向天线组成的三角形无线蜂窝区(图(b));利用120°扇形覆盖的定向天线组成的120°扇形无线蜂窝区(图(c))。
在频分多址和时分多址制式中,在每个蜂窝小区中采用分扇区天线通常只能起到减少干扰的作用,不能增加系统容量。而在码分多址制式蜂窝移动通信系统中,利用120°扇形覆盖的定向天线把一个蜂窝小区划分成三个扇区(如图(c)所示)时,平均处于每个扇区中的移动用户是该蜂窝的三分之一,相应的各用户之间的多址干扰分量也减少为原来的三分之一左右,从而系统的容量将增加约3倍(实际上,由于相邻扇区之间有重叠,一般只能提高到255倍)。
3高系统容量
由于码分数字蜂窝移动通信系统可以通过采用上述两种方法以及其他技术直接地或间接地提高系统容量,使码分系统的容量比模拟FDMA系统及数字GSM系统都要高出若干倍。理论分析表明,在相同的频率带宽下,对于宽带码分系统,每个蜂窝小区所能提供的信道数是模拟FDMA系统的20倍左右,是数字GSM系统的10倍左右;对于窄带码分系统来说,其系统容量的优势有所
降低,但也是模拟FDMA系统的10倍以上,是数字GSM系统的3倍以上。由此可以看出,在移动通信事业迅猛发展的今天,移动用户量日益猛增,而频率资源日趋紧张,采用码分数字蜂窝移动通信系统是势在必行。
4软容量
在模拟频分系统和数字时分系统中,通信信道是以频带或时隙的不同来划分的,每个蜂窝小区提供的信道数一旦固定,很难改变。当没有空闲信道时,系统会出现忙音,移动用户不可能再呼叫其他用户或接收其他 用户的呼叫。当移动用户在越区切换时,也很容易出现通话中断现象。在码分系统中,信道划分是靠不同的码型来划分的,其标准的信道数是以一定的输入、输出信噪比为条件的,当系统中增加一个通话用户时,所有用户输入、输出信噪比都有所下降,但不会出现因没有信道而不能通话的现象。例如对一个标准信道数为40的扇区来说,当第41个用户呼叫时,对所有移动用户的影响是接收机的输入信噪比下降10lg(41/40)=01dB,即使再增加两个用户通信,比标准多三个,其影响是所有接收机的输入信噪比下降10lg[(40+3)/40]=23dB,这使该扇区内的移动用户信息数据的误码率有所升高,通话质量有所下降,但增加的三个用户都不会发生因无信道而出现忙音的现象。这对于解决通信高峰期时的通信阻塞问题和提高用户越区切换的成功率无疑是非常有益的。
5软切换
当移动用户从一个小区(或扇区)移动到另一个小区(或扇区)时,移动用户从一个基站的管辖范围移动到另一个基站的管辖范围,通信网的控制系统为了不中断用户的通信就要做一系列的调整,包括通信链路的转换,位置更新等,这个过程就叫越区切换。越区切换实现了小区(或扇区)间的信道转换,是保证一个正在处理或进行中的呼叫的不中断运行。
在模拟FDMA系统和数字TDMA系统中,移动用户在越区切换时,需要在另一个小区(或扇区)寻找空闲信道,当该区有空闲信道时才能切换。这时移动台的收、发频率等都要作相应的调整,称之为硬切换。这种切换过程是首先切断原通话通路,然后与新的基站接通新的通话链路。这种先断后通的切换方式势必引起通信的短暂间断。另外由于通信环境的影响,在两小区的交叠区域内,移动台接收到的两个基站发来的信号的强度有时会出现大小交替变化,从而导致越区切换的“乒乓”效应,用户会听到“咔嗒”声,对通信产生不利的影响。此外切换时间也较长。
在CDMA系统中,由于所有的小区(或扇区)都可以使用相同的频率,小区(或扇区)之间是以码型的不同来区分的。当移动用户从一个小区(或扇区)移动到另一个小区(或扇区)时,不需要移动台的收、发频率切换,只需在码序列上作相应地调整,称之为软切换。软切换的优点在于首先与新的基站接通新的通话,然后切断原通话链路。这种先通后断的切换方式不会出现“乒乓”效应,并且切换时间也很短。另外由于CDMA系统有“软容量”的优点,越区切换的成功率要远大于模拟FDMA系统和数字TDMA系统,尤其是在通信的高峰期。
6特有的分集形式
在CDMA系统中,由于采用了宽带传输,使它具有了特有的频率分集特性,即当信道具有选频特性时,对CDMA系统中信息传输影响较小。
CDMA系统有分离多径信号的能力,可以实现路径分集。由于移动通信环境的复杂和移动台的不断运动,接收到的信号往往是多个反射波的叠加,形成多径衰落。在模拟FDMA系统和数字TDMA系统中,为了解决多径衰落对通信带来的不利影响,采取了包括增加发射功率等一系列措施。在CDMA系统中,可以采用它特有的技术(如瑞克(RAKE)接收技术),将多径信号分离出来,
分别接收,这样不但克服了多径衰落对通信带来的不利影响,还等效增加了接收有用信号的功率(或者说等效增加了发射信号的功率)。由于这种特有的分集形式以及其他措施,使CDMA系统的发射功率相对很低。
除了这种特有的分集形式外,CDMA系统还采用其他分集技术,如空间分集、时间分集等,使CDMA系统的性能更加提高。
7与窄带系统(模拟系统)共存
当码分系统与窄带系统(例如模拟FDMA系统)工作于同一频段时,由于在CDMA系统中采用了宽带传输方式,并且发射功率较低,平均落到每个窄带系统中的带宽内的干扰信号功率很小。尤其是宽带CDMA系统,其对窄带系统的影响可以忽略不计,窄带系统对CDMA系统的影响可以等效为“人为干扰”,由于CDMA系统特有的抗干扰能力,把这个干扰降低到了最低限度。
这个干扰的存在只使得CDMA系统的容量降低,但不妨碍CDMA系统的正常工作。CDMA系统的带宽越宽,两个系统共存时相互间的影响越小,反之则越大。这给CDMA系统与模拟窄带系统双模式共存以及由模拟移动通信系统向数字移动通信系统平滑过渡提供了可能性。
8良好的保密能力
码分数字移动通信系统的体制本身就决定了它具有良好的保密能力。首先在CDMA数字移动通信系统中必须采用扩频技术,使它所发射的信号频谱被扩展的很宽,从而使发射的信号完全隐蔽在噪声、干扰之中,不易被发现和接收,因此也就实现了保密通信。其次在通信过程中,各移动用户所使用的地址码各不相同,在接收端只有完全相同(包括码型和相位)的用户才能接收到相应的发送数据,对非相关的用户来说是一种背景噪声,所以CDMA系统可以防止有意或无意的窃取,具有很好的保密性能。
9发射功率低、移动台的电池使用寿命长
由于在码分数字移动通信系统中,可以采用许多特有的技术来提高系统的性能,所要求的发射功率大大降低,从而对电池的体积减小和使用寿命增长都是非常有益的,对移动台整机的体积减小和成本的降低也是有利的。
10频率分配和管理简单
在模拟频分多址和数字时分多址移动通信制式中,频率分配和管理是一项比较复杂的技术,而动态频率分配就更加复杂。在码分数字移动通信体制中,所有移动用户可以只用一个频率,不需要动态分配,其频率分配和管理都很简单。
以上是码分数字移动通信系统的主要优点,但同时它也存在需要人们攻克的难点。在CDMA数字移动通信系统中,突出的问题是远近效应。所谓远近效应是指距接收机近的用户对距离远的用户的干扰。
在CDMA数字移动通信系统中,由于在同一蜂窝的各用户使用的是同一频率,共享一个无线频道。由于路途衰耗的原因,距基站近的移动台所发射信号有可能完全淹没距离远(例如处于蜂窝区边缘)移动台所发送来的信号,如果不采取有力的措施,这将使基站无法正常接收远距离移动台所发送来的信号。而在模拟频分多址和数字时分多址移动通信系统中,由于各信道使用不同频率或时隙,且各信道之间有相应的保护带宽或保护时间,故远近效应问题不太突出。
当前,在CDMA系统中为解决这个问题所采取的措施主要有两种:第一种是信号处理方法,在接收端用信号处理的方法,依次逐个抵消掉较强信号,直到能解调出所需信号为止,但由于这种方法运算量很大及当前器件的运算速度等问题,还不能实际使用;当移动台距基站近时,其发射功率减小,当距离远时,发射功率增大,从而保证在基站所收到的每个移动台的信号功率相等,消除远近效应的影响,使系统处于最佳运行状态。功率控制技术已在实际当中采用,它是CDMA数字移动通信系统中的最关键技术之一。功率控制技术很复杂,其所控制的范围和精度直接影响到整个系统的性能,如偏差过大,不仅系统容量迅速下降,而且通信质量也将急剧下降。
码分数字蜂窝移动通信网的网路结构如下图所示。
它是一个抽象的平面图,其实现将随着功能实体在各个物理单元中的分布情况不同而有所改变。各部分的作用和功能如下:
1移动台(MS)
其包括手机和车台等,是用户端终接无线信道的设备;通过空中无线接口Um,给用户提供接入网路业务的能力。
2基站(BS)
其设于某一地点,是服务于一个或几个蜂窝小区的全部无线设备的总称。它是在一定无线覆盖区域内,由移动交换中心(MSC)控制,与移动台通信的设备。
3移动交换中心(MSC)
是完成对位于它所服务的区域中的移动台进行控制、交换的功能实体,也是与其他MSC或其他公用交换网之间的用户业务的自动接续设备。
4归属位置寄存器(HLR)
是为了记录的目的而指定用户身份给它的一种位置登记器。登记的内容是用户的信息(例如ESN、DN、IMSI(MSI)、服务项目信息、当前位置、批准有效的时间段等)。
5拜访位置寄存器(VLR)
是MSC检索信息用的位置寄存器。例如处理发至或来自一个拜访用户的呼叫信息——用户号码、向用户提供本地用户的服务等参数。
6设备识别寄存器(EIR)
是为了记录的目的而分配用户设备身份给它的寄存器;用于对移动设备的识别、监视、闭锁等。
7鉴权中心(AC)
是一个管理与移动台相关的鉴权信息的功能实体。
8消息中心(MC)
是一个存储和转送短消息的实体。
9短消息实体(SME)
是合成和分解短消息的实体。有时HLR、VLR、EIR及AC位于MSC之中,SMC位于MSC、HLR或MC之中。
码分数字蜂窝移动通信网不是公共交换电话网(PSTN)的简单延伸,它是与PSTN、PSPDN、ISDN等并行的业务网。由于移动用户大范围的移动,该网在管理上应相对的独立。
通信系统的通信容量可以用不同的表征方法进行度量。对于点对点的通信系统而言,系统的通信容量可以用信道效率来度量,即用在给定的频率带宽中所能提供的最大信道数目进行衡量。一般地说,在给定的频率带宽中所能提供的信道数目越大,系统的通信容量也越大。在蜂窝移动通信系统中,系统的容量有多种衡量方法,如用每小区可用信道数(ch/cell)、每小区每兆赫兹可用
信道数(ch/cell/MHz)、每小区爱尔兰数(Erl/cell)、每平方公里用户数(用户数/km)以及每平方公里每小时通话次数(通话次数h/km)等进行度量。这些表征方法从不同的角度对系统的容量进行衡量,它们之间是有联系的,在一定的条件下可以互相转换。考虑到信道的分配涉及到频率复用和由此而产生的同频干扰问题,一般认为用每小区可用信道数(ch/cell)或每小区每兆赫兹限制CDMA数字蜂窝移动通信系统容量的原因是由于系统中存在多址干扰,即同时通信的移动用户之间的相互干扰。在某个蜂窝小区内,如果有N个用户同时通信,系统必须能提供N个或N个以上的(逻辑)信道。同时通信的用户数N越大,多址干扰越强。N的最大值就是系统容量,即在保证接收所需信号功率与干扰功率的比值大于或等于某一门限值的条件下,该小区同时通信的最大用户数。
首先考虑一般码分通信系统(即暂不考虑蜂窝移动通信系统的特点)的容量。若N个用户同时通信,每个用户的信号都受到其他N-1个用户信号的干扰。假定系统的功率
控制是理想的,即到达接收机的所有N个信号强度都一样,则理论分析表明,此时系统容量为
式中W是CDMA系统所占的有效频谱宽度;Rb是信息数据的速率;Eb是信息数据的一比特能量;N0是干扰(噪声)的功率谱密度(单位赫兹的干扰功率);W/Rb是CDMA系统的扩频增益。当CDMA系统所占的频谱宽度W一定时,它随着信息速率Rb的降低而增大。Eb/N0是比特能量与噪声密度比,其比值取决于系统对误码率或话音质量的要求,并与系统的调制方式和编码方案有关。
例如:N-CDMA系统所占的有效频谱宽度W=12288MHz,话音编码速率Rb=86kbit/s,若比特能量与噪声密度比Eb/N0=7dB,则N=295;若Eb/N0=6dB,则N=37。
结果说明:在满足一定通信要求的前提下,比特能量与噪声密度比Eb/N0越小,系统的容量越大。但在上面的结果中,没有考虑CDMA蜂窝系统的特点,还应该根据其特点对系统容量公式进行修正。
1采用语音激活技术提高系统容量
统计结果表明,对话的激活期(占空比)d=035。也就是,人们在通话过程中平均只有35%的时间在讲话,
另外65%的时间处于听对方讲话、话句间停顿或其他等待状态。在CDMA数字蜂窝移动通信系统中,所有用户共享同一个无线频道,如果采用语音激活技术,使通信中的用户有语音时才发射信号,没有讲话时,该用户的发射机就停止发射功率,那么任一用户话音发生停顿时,其他用户所受到的干扰都会相应地平均减少65%,从而系统容量可以提高到1/d=286倍。为此,CDMA数字蜂窝移动通信系统的计算公式变成
式中d是语音占空比(d=035)。
2利用扇区划分提高系统容量
在码分多址制式蜂窝移动通信系统中,利用120°扇形覆盖的定向天线把一个蜂窝小区划分成3个扇区时,处于每个扇区中的移动用户是该蜂窝的三分之一,相应的各用户之间的多址
干扰分量也减少为原来的约三分之一,从而系统的容量将增加约3倍(实际上,由于相邻天线覆盖区之间有重叠,一般能提高到G=255倍左右)。为此,CDMA数字蜂窝移动通信系统的计算公式变为
式中G是扇形分区系数(G=255)。
3邻近蜂窝小区的干扰对系统容量的影响
根据码分多址蜂窝移动通信系统的特点,在CDMA蜂窝移动通信系统中,所有用户共享同一个无线频道,即若干个小区内的基站和移动台都工作在相同的频率上。因此,任一小区的移动台都会受到相邻小区基站的干扰,任一小区的基站也都会受到相邻小区移动台的干扰。这些干扰的存在必然会影响系统的容量。其中任一小区的移动台对
相邻小区基站(反向信道)的总干扰量和任一小区的基站对相邻小区移动台(正向信道)的总干扰量是不同的,对系统容量的影响也有所差别,下面分别加以简要说明。
(1)正向信道(由基站到移动台)
在一个蜂窝小区内,基站不断地向所有通信中的移动台发送信号,移动台在接收它自己所需的信号同时,也接收到基站发给所有其他移动台的信号,而这些信号对它所需的信号将形成干扰。当系统采用正向功率
控制技术时,由于路径传播损耗的原因,位于靠近基站的移动台,受到本小区基站所发射的信号干扰比距离远的移动台要大,但受到相邻小区基站的干扰较小;位于小区边缘的移动台,受到本小区基站所发射的信号干扰比距离近的移动台要小,但受到相邻小区基站的干扰较大。移动台最不利的位置是处于3个小区交界的地方,如下图中的X点。
假设各小区中同时通信的用户数都是N,即各小区的基站同时向N个用户发送信号,
当移动用户从一个小区(或扇区)移动到另一个小区(或扇区)时,移动用户从一个基站的管辖范围移动到另一个基站的管辖范围,通信网的控制系统为了不中断通信就要做一系列的调整,包括位置更新、转换通信链路等,这个过程就叫越区切换。
越区切换实现了小区(或扇区)间和频道间的信道转换,保证了一个正在处理或进行中的呼叫的不中断运行。切换是由于无线转播、业务分配、 *** 作和维护激活、设备故障等原因而产生的。例如:
(1)移动台移动至小区的边界,信号强度低到一定程度;
(2)移动台在小区中进入信号强度缝隙中(阴影区),信号恶化到一定程度;
(3)移动交换中心发现一些小区太拥挤,而另一些小区很闲时,可命令拥挤的小区的一些移动台提前切换,以调整各小区的负荷量等等。
对越区切换的基本要求是:
(1)高的切换成功率;
(2)减少系统中不必要的切换;
(3)使用优化的越区切换算法来控制各小区的业务量;
(4)切换速度快,切换经历的时间短;
(5)对话音质量的影响小等。
在CDMA系统中的越区切换有两类,即硬切换(Hard Handoff)和软切换(Soft Handoff)。
硬切换是指移动台在不同频道之间的切换, 这些切换需要移动台变更收发频率,即先切断原来的收发频率,再搜索、使用新的频道。
硬切换会造成通话暂短中断,切换时间较长时(大于200ms),将影响用户通话。
软切换是指移动台在相同的CDMA频道中的切换。软切换不需要移动台变更收发频率,只需要在伪随机码的相位上作一调整。CDMA系统的移动台中有多个RAKE (瑞克)接收机,可以同时接收几个基站发来的信号。当需要切换时,移动台除了与原服
务基站保持通话链路外,还与新的基站建立了通话链路。直到移动台接收到的原基站发来的信号低于一门限时才切断与原基站的通话链路。这种先通后断的软切换保证了通话不会中断。通常所说的软切换中还包含一种更软切换(Softer Handoff)。更软切换是指同一蜂窝小区内不同扇区之间的切换。在两扇区边界,基站和移动台通过分集技术可以同时在两个扇区传输信号。
在软切换过程中,由于移动台中有多个RAKE接收机,移动台开始与目标基站建立通信时,不中断与原服务基站的通信,此时移动台同时与两个基站建立了通话链路。当原服务基站的信号强度低到一门限值时,再切断与原服务基站的通信联系。由于移动台在软切换中不变更收发频率,所以软切换只能在具有相同CDMA频道的小区(或扇区)之间进行切换。
软切换是CDMA系统中特有的一个重要概念。在CDMA蜂窝移动通信系统中,具有相同CDMA频道的各小区使用同一频率,移动台在小区之间移动时不需要像频分或时分系统那样重新分配频率或时隙,这使得软切换成为可能。
在CDMA系统中,一般情况下每个移动台拥有三个以上RAKE接收机,即每个移动台中有多个解调器,这允许移动台同时与两个或多个小区保持通信。
移动台在与基站A通信时,连续监视相邻小区的导频信号强度,任何一个导频信号(如基站B)的强度超过一预定的门限时,立即报告系统。系统则命令基站B建立与移动台的通信,开始软切换。此时移动台同时接收到来自两个基站的通信信号,两路信号密切结合,彼此加强。
在反向链路上,移动交换中心根据基站接收的信号强度确定哪个基站的接收信号更强,从而选择它。
参考文献
[1] 樊昌信,等通信原理北京:国防工业出版社
[2] 郭梯云,邬国扬,李建东 移动通信 西安:西安电子科技大学出版社
[3] 啜钢 等移动原理通信与系统[M]北京邮电大学出版社
[4] 段丽移动通信技术人民邮电出版社
[5] 韦惠民蜂窝移动通信技术》西安电子科技大学出版社
[6] 曹志刚,钱亚生 现代通信原理 北京:清华大学出版社
[7] 邓华MATLAB通信仿真及应用实例详解 北京: 人民邮电大学出版社
[8] 姚东等MATLAB命令大全北京人民邮电出版
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)