1、在快速建立产品时,引导进来别人建立的物模型需要修改什么?()
AProductKey
BProductSecret
CDeviceSecret
DDeviceName
正确答案:ProductKey
2、查阅AT指令,如果我们只是做一个物联网的时钟,也就是准确时间是从网络上获取的,在设置北京时间为东八区后,你可选用哪个AT指令来完成。()
AAT+WJAPS
BAT+SYSTIME
CAT+MQTTKEEPALIVE
DAT+RTCGET
正确答案:AT+RTCGET
3、当串口接收传输过来的数据仅仅是长度不对时,可能的原因是:()
A波特率没设置好
B停止位设置错误
C缓存区大小没设置好
D硬件速度不够
正确答案:缓存区大小没设置好
1、NB-IoT与LoRa均为LPWAN的重要实现方式。下列两种网络技术的对比,说法正确的是:()
ALoRa的信道带宽相比NB-IoT更宽。
BLoRa的传输距离比NB-IoT更远
CLoRa的传输速度比NB-IoT更快
DLoRa的建网成本比NB-IoT更低
正确答案:LoRa的传输距离比NB-IoT更远
2、嵌入式实时 *** 作系统蓬勃发展的今天,以下不属于中国企业的RTOS是:()
ART-Thread
BAliOSThings
CFreeRTOS
DLiteOS
正确答案:FreeRTOS
3、FreeRTOS中任务(Task)可能处于:运行态、阻塞态、就绪态、挂起态四种之一,不同状态之间可以进行转换,但以下不可能直接实现的转换是:( )
A由就绪态到运行态
B由阻塞态到挂起态
C由就绪态到挂起态
D由挂起态到阻塞态
正确答案:由挂起态到阻塞态
1、智慧小屋的实现过程中,涉及到了物联网系统架构中的那几层? ()
A设备层
B网络层
C平台层
D应用层
正确答案:设备层#网络层#平台层#应用层
2、以下不属于物联网 *** 作系统特点的是()
A实时性
B安全性
C代码行数少
D具有丰富的功能组件
正确答案:代码行数少
3、课程里智慧小屋系统搭建过程中,没有使用以下哪种传感器:()
A温度传感器
B光敏传感器
CPM25传感器
D噪声传感器
正确答案:噪声传感器
4、课程里智慧小屋中设备接入阿里云物联网平台,是基于以下哪种协议:()
A Modbus
B MQTT
C CoAP
D其余选项都不对
正确答案: MQTT
5、智慧小屋中Arduino与WIFI模块之间的通信接口是:()
A I2C
B SPI
C UART
D其余选项都不对
正确答案: UART
1、NB-IoT技术是实现低功耗广域网的一个重要技术,之所以被称为窄带(Narrow Band)是因为它所占用的带宽仅为()
A180Hz
B180KHz
C18MHz
D18MHz
正确答案:180KHz
2、得益于占用带宽小的特点,NB-IoT支持带内部署的方式,即在原有通讯频段的基础上添加NB-IoT网络,目前应用来看,不支持NB-IoT带内部署的频段有:( )
A光通讯频段
BGSM网络频段
CUMTS网络频段
DLTE网络频段
正确答案:光通讯频段
3、窄带通信的技术标准最早由哪家组织\公司提出:( )
A3GPP
B中国电信
C华为
D高通
正确答案:华为
Wi-Fi最大的优点是连接快速持久稳定,它是解决IoT设备端连接的首选方案,唯一需要考虑的是智能设备对于Wi-Fi的覆盖范围的依赖导致智能设备的活动范围比较小,缺点是不适合随身携带或户外场景
1、3765C考勤机是一款典型的通过Wi-Fi与云平台连接通讯设备,但是手机与其连接借助的是Bluetooth通讯
蓝牙最大的优点是不依赖于外部网络,便携,低功耗,只要有手机和相应的智能设备,就能够保持稳定的连接,走到哪连到哪,所以大部分运动的智能设备和户外使用的设备都会优先考虑Bluetooth。它的主要不足有:
1不能直接连接云端
2传输速度比较慢,只能用于数据量较小的传输
3组网能力比较弱(距离近(大概10米)、蓝牙的组网一个central只能连接7个外设)
13650签到机采用的蓝牙通讯:校验设备、设置各种参数,签到机的发现采用的Beacon协议(而Beacon协议也是蓝牙协议的扩展):智能手环与手机之间的通讯是蓝牙通讯
Wi-Fi的不足是智能设备移动范围小,蓝牙的短板是设备不能直接连云端和组网能力弱。而WWAN既可以移动,也可以随时联网,看上去好像完全弥补了Wi-Fi和Bluetooth的不足,实际上它也两个主要的短板
1在使用的过程中可能会产生比较高的费用
2网络状况不稳定,常常遇到无网或弱网的环境
智能设备车载Wi-Fi
前面介绍了主流的三种无线技术占到了所有IoT使用场景的95% ,剩下的是一些特殊场景用到的无线技术选型
ZigBee,也称紫蜂,是一种低速短距离传输的无线网上协议,底层是采用IEEE 802154标准规范的媒体访问层与物理层。主要特色有低速、低耗电、低成本、支持大量网上节点、支持多种网上拓扑、低复杂度、快速、可靠、安全
例如在全屋智能场景中,家中已存在大量IoT设备,如果使用Wi-Fi方案,每个设备配网会非常麻烦,并且Wi-Fi每次做移动,修改密码,智能设备都要一一作出调整。如果使用蓝牙方案,以目前BLE42标准,蓝牙的组网一个central连接7个外设,但是蓝牙的组网能力弱也满足不了需求,所以在全屋智能场景中,经常会使用ZigBee+Wi-Fi的二合一网关。ZigBee和蓝牙一样都是近距离低功耗的通讯技术,但他对比蓝牙有个最大的优势就是强大的组网能力,在全屋智能场景中,IoT设备多达十几个,蓝牙的配网模式满足不了需求,所以一般会使用搭配ZigBee和Wi-Fi的二合一网关,通过ZigBee连接IoT设备,通过Wi-Fi将数据同步到云端
智能家居场景
智能家居的通信一般使用Wi-Fi,蓝牙,Zigbee。而我们的手机,平板可以通过蓝牙和Wi-Fi接入进行数传通信。电脑可以通过Wi-Fi
此方案中,蓝牙和Wifi都可以作为设备的接入点,即使身边没有专业的Zigbee控制器,也可以通过蓝牙,Wifi这些常用的设备接入,最终通过串口控制另一个可接入模块和Zigbee的主设备
例如飞行器的使用场景,飞行器一般都在没有Wi-Fi的环境使用,所以Wi-Fi不满足,飞行器常常有较远的飞行距离,所以Bluetooth和ZigBee不满足,另外飞行器常常在海边、山上等GPRS无线信号或者弱网的环境使用,所以WWAN也不合适,从上述来看单一的无线通讯模块都不能很好的解决飞行器的通讯需求,所以飞行器需要用的是多种无线模块的组合使用,通过Bluetooth让遥控器和手机连接,通过Sub1GHZ处理长距离时飞行器和遥控器之间的通讯,通过其他波长处理中距离或短距离飞行中的数据通信,这种组合技能满足手机 *** 控,又能在中距离有高质量的图像数据,在远距离还能继续控制
NB-IoT,Narrow BandInternet of Things,窄带物联网,是一种专为“万物互联”打造的蜂窝网络连接技术,万物互联网络的一个重要分支。顾名思义,NB-IoT 所占用的带宽很窄,只需约 180KHz,而且使用License 频段,可采取带内、保护带或独立载波三种部署方式,与现有网络共存,并且能够直接部署在GSM、UMTS 或 LTE 网络,即2/3/4G的网络上,实现现有网络的复用,降低部署成本,实现平滑升级
移动网络作为全球覆盖范围最大的网络,其接入能力可谓得天独厚,基于蜂窝网络的 NB-IoT 连接技术的前景更加被看好,已经逐渐作为开启万物互联时代的钥匙,而被商用到物联网行业中
2014年,华为与沃达丰共同提出 NB-M2M
2015年5月,华为和高通共同宣布了一种融合的解决方案,即上行采用 FDMA 多址方式,下行采用 OFDM 多址方式,命名为 NB-CIoT(Narrow Band Cellular IoT)
2015年8月10日,在 GERAN SI阶段最后一次会议,爱立信联合几家公司提出了 NB-LTE(Narrow Band LTE)的概念
2015年9月,3GPP在2015年9月的 RAN 全会达成一致,NB-CIoT 和 NB-LTE 两个技术方案进行融合形成了 NB-IoT WID。NB-CIoT 演进到了 NB-IoT(Narrow Band IoT),确立 NB-IoT 为窄带蜂窝物联网的唯一标准
2016年4月,伦敦 M2M 大会上华为宣布与沃达丰成立 NB-IoT 开放实验室
2016年4月,NB-IoT 物理层标准在 3GPP R13 冻结
2016年6月,NB-IoT核心标准正式在3GPP R13冻结
2017年一季度,根据《国家新一代信息技术产业规划》,把 NB-IoT 网络定为信息通信业“十三五”的重点工程之一
2017年4月1日,海尔、中国电信、华为三方签署战略合作协议,共同研发基于新一代 NB-loT 技术的物联网智慧生活方案
2017年4月25日,全球移动通信设备供应商协会发布数据,目前全球仅有4张 NB-IoT 商用网络。但同时又指出,至少有13个国家的18家运营商规划部署或正在测试40张 NB-IoT 网络
2017年5月,软银与爱立信合作,将在日本全面部署 Cat-M1 和 NB-IoT 网络,以期率先在日本国内推出商用蜂窝物联网业务
2017年5月,中国联通上海宣布5月底完成上海市 NB-IoT 商用部署。上海联通在2016年上半年,建设了全球首个 pre NB-IoT 大规模连续覆盖区域—上海国际旅游度假区,并携手华为共同发布 NB-IoT 技术的智能停车解决方案
2017年5月,华为 NB-IoT 芯片 Boudica 120在6月底大规模发货
从2018年开始全面推进国家范围内的 NB-IoT 商用部署。其实在我们生活当中已经推行了很长一段时间了。试用商反馈也是一片良好,垂直使用场景也是数不胜数
NB-IoT目前的应用
综上所述,NB-IoT 就像一个可以保障 5G 大范围完美落地的安全气垫。建设基于 NB-IoT 技术的物联网垂直行业应用将趋于更加简单,分工更加明晰。在 5G 大家庭里,它是一个温润如水的大哥。有山的背膀和水的包容力。是 5G 家里稳定又踏实的“经济适用男”。是家里第一个冲向前线的人,并且为了实现家庭的大目标尽可能完善自己。飞速发展的 5G 时代里,它是勇攀高峰的保险绳
对前面无线通讯技术的做个总结,优缺点以及适用于哪些领域一目了然
对于未来的Bluetooth50以及NB-IoT都是需要我们密切关注的技术,Bluetooth50相比42,在组网和传输距离上有了很大的提升,连接范围扩大了4倍,速度提高了2倍,无连接数据广播能力提高了8倍,Bluetooth50对于ZigBee的冲击影响可想而知
而NB-IoT目前的提出就是针对IoT的使用场景,其中最大的特色是覆盖面广,价格便宜。NB-IoT现在联盟的力量很强大,大部分芯片商,通讯商,电信运营商都参与其中,都在积极的推进NB-IoT的公共网络建设,未来潜力非常值得关注
IoT技术选型及模型设计的思考
什么是NB-IoT
nb-iot是在终端设备里安装模组(模组由芯片和外围电路组成),安装了NB的模组就直接连接上运营商的基站了,运营商目前收费标准差异很大,他根据客户使用终端的数量来定价,卖给水表公司的收费,十年才几十元,模组的SIM跟手机SIM卡一样。随着汽车数量的增加,停车位相形之下越来越少,尤其市区停车往往一位难求。庆幸的是,智能停车借助各种连接设备与传感器,能够有效帮助使用者减少搜寻停车位的问题。
智能停车导引系统具备多种优点,而降低车流量以及碳排放量则是最重要的一点。Streetline公司营销事业开发部门资深副总Kurt Buecheler引用经济学家Donald Shoup的说法,“每改善10%的塞车问题可促进城市GDP成长2%。我们可以大胆推估,借助提供智能停车系统,将使得与洛杉矶同等级的城市GDP成长达200亿美元。”
Smart Parking Technology欧洲、中东暨非洲区业务经理表示,“智能停车技术能有效降低在大城市中车辆回堵以及碳排放量的问题,让驾驶人不需要持续制造二氧化碳,只为了寻找停车位。”
智能停车技术发展
智能停车导引系统主要包含可侦测停车空位并能将数据传送到后台的传感器,接着转送相关讯息到客户端的App应用程序或是标示系统。目前市场上主要应用的两种传感器为超音波传感器与磁性传感器。超音波传感器通常应用于室内停车场,传输音波频率范围从25∼50KHz,这个频段是人体所无法接收到的声谱。系统控制终端能连接以太网络,并借助有线(RS485)或是无线(频率433 MHz)与传感器相互连接。
至于城市街道停车系统则多半使用埋在地下的充电式磁力传感器。Happiest Minds Technologies物联网中心总经理Manu Tayal表示,“通常传感器的磁性范围会固定在±1200μT。而使用者能依据需求选择,设定每个传感器的输出数据频率在1563Hz到800Hz之间。传感器必须确保工作温度范围在零下40度∼85度之间。”
大华科技停车解决方案经理Jieruo Zhang表示,“磁力传感器通常只采用无线方式与控制终端连接。一般有两种无线连接解决方案,短距离以及NB-IoT(Narrow BandInternet of Things,窄频物联网)等两种。短距离的方案多半采用无线433MHz频率连接邻近的控制端,而控制器则透过手机通讯连接网络。至于NB-IoT方案,每个磁力传感器都能连接至透过手机通讯的NB-IoT网络,可说是大型物联网应用的理想选择”。Nedap Identification Systems停车场无线检测技术产品(SENSIT)项目经理Edwin Siemerink指出,“我们采用一套无线网络解决方案作为SENSIT传感器以及终端控制系统数据传输的桥梁。同时,在无线电网络中也设置了中继节点以及SENSIT网关。”
影像在系统中扮演的角色
传统传感器例如超音波以及磁力等多半用来侦测停车空间是否仍有空位或已经被占用。然而,近年来影像感测已经成为一种可行性高甚至更经济的替代方案。海康威视垂直整合方案营销经理Adler Wu指出,“摄影机能协助辨识可用车位与位置等信息,并实时在停车场地图中显示,用户能借助App找到有空位的停车场、计算出最快的到达路线以指引驾驶人前往停车。”
Zhang也指出,“有些监控业者例如大华科技,正在开发应用于城市道路的影像侦测技术,所有空间侦测摄影机可同时观测多处场所(2∼3个点),有些地下停车场或是停车塔甚至能一次监测6个点左右,可说是一套相当经济又方便的系统架构。”
自动车牌辨识系统(ALPR)
与其他传感器不同,影像还能提供另一个重要功能:车牌辨识(ALPR),能协助执行各种任务例如取缔违规停车等。以Genetec的ALPR系统AutoVu为例,该系统能协助终端用户更有效的监看停放于设施或道路上的车辆。此方案需要将ALPR摄影机安装在用户的车顶上不断运作,或是固定在无栅栏的流动式停车场顶部。在市区街道上,架设ALPR摄影机的汽车也可以协助取缔交通违规事件。
Genetec产品营销经理CharlesPitman说明,“ALPR之所以能达到停车智能化的原因在于能让停车场管理单位更有效率的执行工作。在过去,倘若想要知道这台车子是否取得停车许可,警卫必须要求驾驶出示或确认挡风玻璃上是否有停车许可证,这是一项非常耗时耗力的工作。借助ALPR系统,不需要警卫查看,摄影机就会自行判别来访者是否具有权限进入该区域。”
事实上,ALPR系统不仅能协助简化 *** 作流程,也能让驾驶人更为便利。以大学校园为例,与过往需要排队购买纸本通行证的做法不同,学生现在只需要上网预先登记,在出入停车场的时候ALPR就会自动验证。Pitman表示,“采用ALPR时用户不需要实体证件,而是拿到一份个人的虚拟车牌许可证。使用者仅须上网、支付登记费、输入个人车牌,就完成申请程序。”
数据分析才是系统的实际价值
除了能更简单搜寻外,传感器以及设备所产生的数据能被加以分析,从而协助改善城市中的各项服务、提升居住质量。Jieruo Zhang表示,“在物联网时代,大数据以及网络经济、数据流更显重要。以智能停车而言,如果没有车牌信息,则停车纪录内容将会完全不同。就影像侦测智能停车来看,停车与付款信息至少在三个部分会有很大的差异:第一,系统能引导驾驶如何停车与出场,进而提升停车场的轮转率;第二,能提供客制化停车服务,例如预约停车或VIP据点管理,提升附加价值;第三,借助更稳定的用户数量以及金流,停车App将成为驾驶普遍使用的工具之一,从而吸引其他汽车应用领域,例如洗车行或租车公司等。”Adler Wu也补充,“ALPR/ANPR可以实现车辆出入口自动化的目标,并为停车场业者提供车辆停留时间或特定车辆的收费规范等丰富信息。”
对地方政府而言,智能停车在简化流程上的成果显而易见,然而,智能停车的真正价值在于所收集到的资料,能协助政府制定相关政策以及未来发展蓝图。例如某些区域没有足够的停车空间可以应付过多的车辆,但借助智能停车获取的信息,各县市政府将可以去规划并决定要在哪里设立更多的停车空间及停车位设施,或是在特定区域提高停车费等。
Pitman指出,“现在系统都能够收集到这些数据,而人们也能在取得数据后进行分析、制作报告,从而发现哪些区域停车空间减少,但车辆却比以前更多,政府便可为增加停车空间进行长期的规划与策略。例如当街道上已经没有任何停车的空间时,即需要兴建一座新的立体停车场。”
宏碁商业交易及智能辨识部门资深经理Jay Liu表示,“倘若地方政府希望这个区域有较高的轮转率,例如政府并不希望人们在这里停车超过4至5个小时,便可以提高该区域的停车费率,这就是利用大数据分析得到的结果。你可以发现某些路段在某段时间的占用率较高,便可依此调整费率。”
这最终将使得地方政府收入增加。Streetline市场与企业发展部门资深副总裁Kurt Buecheler指出,“物联网设备是收集停车空间、高速公路时速、出发地/目的地研究以及其他实时与现场信息的关键。倘若市区通行更容易,则人们会更常进出市区,我们的系统已经协助让市区停车场增加172%,营业额也成长11%。公司刚开始进行智能城市的规划,而停车问题是最实际的起点。”
迈向智能化
智能停车毫无疑问将是智能城市的关键之一。物联网传感器与设备正在简化车位导引与付费流程,而透过这些传感器或设备产生的资料,可以让地方政府或是停车场运营商更了解如何改进服务或制定未来相关发展计划。随着世界各地城市逐渐迈向智能化,智能停车势必成为现在与未来的发展趋势!
在磁力传感器中加入红外线技术
有些系统供货商纳入如红外线等技术到磁力传感器之中,以强化传感器的准确性。Nedap Identification Systems公司SENSIT企业经理Edwin Siemerink表示,“我们公司同时采用两种技术,一个是红外线,另一个是磁力侦测,以确保其成为市场上准确率最高的系统。由于磁性侦测会受到其他车辆、电缆、架构、轨道以及地铁缆线等因素影响,这正是我们会搭配红外线技术的主要原因”。
Smart Parking Technology公司欧洲、中东暨非洲区业务经理Jim Short也指出,“由于磁力侦测很容易受到外在环境干扰,例如周围的大型金属对象、各种类型的电器、混凝土或柏油碎石中所包含的磁性物质,甚至是最常见的、存在于周边环境的磁铁。而我们的磁力传感器若侦测到汽车出没的阈值变化时,同时也会利用红外线传感器进行验证。”
ALPR让停车付款更智能
在许多停车场已经可以看到ALPR的实际应用,系统会在车辆入场时撷取车牌信息,而当驾驶出场前到自动缴费机输入车牌号码,即可付款离场。甚至,更方便的系统能在车辆出场之际自动扣款,驾驶人完全不需再去自动缴费机付款。Happiest Minds Technologies物联网中心总经理Manu Tayal表示,“我们提供了一个整合付款网关的手机App给通勤者,通勤者可以储值任何金额到与车牌连结的电子货币包之中,当车辆离开通过网关时即自动扣款。”
ALPR也可以方便地应用于全市的路边停车场。宏碁便提出一个解决方案,运用超音波传感器结合电子广告牌与摄影机,前者用于侦测是否有停车位,一旦有车辆进入停放,摄影机会立即在车辆出入时撷取车牌信息与停车时间。接着,这些信息就会传送到付款系统,直接从驾驶者账户扣款。
发掘科技一家专业的物联网硬件方案公司:发掘科技
首先说明什么是nb-iot终端,在nb-iot网络中,水表、电表就是终端,在水表、电表上安装通讯模块,使之有通讯功能,就成了nb-iot网络中的终端。这个通讯模块,由一颗通讯芯片+一组外围电路组成,这就是nb-iot终端模组。
一、帧结构比较
14G和5G相同之处
帧和子帧长度均为:10ms和1ms。
最小调度单位资源:RB
24G和5G不同之处
1);子载波宽度
4G:固定为15kHz。
5G:多种选择,15kHz、30kHz、60kHz、120kHz、240kHz,且一个5G帧中可以同时传输多种子载波带宽。
2); 最小调度单位时间
4G:TTI, 1毫秒;
5G:slot ,1/32毫秒~1毫秒,取决于子载波带宽。
此外5G新增mini-slot,最少只占用2个符号。
3);每子帧时隙数(符号数)
4G:每子帧2个时隙,普通CP,每时隙7个符号。
5G:取决于子载波带宽,每子帧1-32个时隙,普通CP每时隙14个符号。
4G的调度单位是子帧(普通CP含14个符号);5G调度单位是时隙(普通CP含14个符号)。
35G设计理念分析
1);时频关系
基本原理:子载波宽度和符号长度之间是倒数关系,宽子载波短符号,窄子载波长符号;
表现:总带宽固定时,时频二维组成的RE资源数固定,不随子载波带宽变化,吞吐量也是一样的。
2);减少时延
选择宽子载波,符号长度变短,而5G调度固定为1个时隙(12/14个符号),调度时延变短。
当选择最大子载波带宽时候,单次调度从1毫秒(15kHz)降低到了1/32毫秒(480kHz),更利于URLLC业务。
4 5G子载波带宽比较
1);覆盖:窄子载波好
业务、公共信道:小子载波带宽,符号长度长,CP的长度就唱,抗多径带来的符号间的干扰能力强。
公共信道:例如PUCCH、PRACH需要在一个RB上传完,小子载波每RB带宽也小,上行功率密度高。
2);开销:窄子载波好
调度开销:对于大载波带宽,每帧中需要调度的slot单位会多,调度开销增大。
3);时延:宽子载波好
最小调度时延:大子载波带宽,符号长度小,最小调度单位slot占用时间短,最短1/32毫秒。
4);移动性:宽子载波好
多普勒频移忍受度:在频移一定情况,大带宽影响度小,子载波间干扰小。
5);处理复杂度:宽子载波好
FFT处理复杂度:例如15kHz时,优于FFT多,设备只能支持到275个RB(50MKz)。
55G常用子载波带宽
1);C-Band
eMBB:当前推荐使用30kHz。
URLLC:宽子载波带宽。
6自包含
4G:单子帧要么只有下行,要么只有上行(特殊子帧除外),下行子帧传完后,才传上行子帧,3:1的比例下,下行发送开始3ms后,才开始发送上行反馈,时延比较大。
5G:在每个时隙里面都引入与数传方向相反方向的控制信道,可以做到快速反馈降低(下行反馈时延和上行调度时延),例如30kHz时候,反馈可以做到05ms单位,其它大子载波带宽,可以做到更小时延。
二、TDD的上下行配比
1TDD分析
1)、优势
资源适配:按照网络需求,调整上下行资源配比。
更好的支持BF:上下行同频互异性,更好的支持BF。
2)、劣势
需要GPS同步:需要严格的时间同步。
开销:上下行转换需要一个GAP,资源浪费。
干扰:容易产生站间干扰,例如TDD比例不对齐,超远干扰等。
2从TDD-LTE看5G
TDD比例无创新:LTE和5G在TDD比例设计上都差不多,上下行比例可调。
动态TDD短时间不太可能:同一张网络只能一个TDD比例,否则存在严重的基站间干扰。
TDD比例会收敛:从LTE看,初期也是定义了很多的TDD比例,但最终都收敛到了3:1的比例(下行与上行的资源配比),5G应该也会如此。
同步:5G运营商之间同步,NR与TDD-LTE之间同步。
三、信道:传输高层信息
1 公共信道
1) ;下行
a)PCFICH,PHICH
4G:有此信道。
5G:删除此信道,降低了时延要求。
b)PDCCH
4G:无专有解调导频,不支持BF,不支持多用户复用,覆盖和容量差;PDCCH在频域上散列,有频选增益,但是前向兼容不好,例如GL动态共享,需考虑PDCCH如何规避。
5G:有专有解调导频(DMR)、支持BF、支持多用户复用,覆盖(9db增益)和容量好;PDCCH设置在特定的位置,前向兼容性强,想把其中部分频段拿出来很简单。
c)广播信道
4G:频域位置固定,放在带宽中央,不支持BF。
5G:位置灵活可配,前向兼容性强,支持BF,覆盖提升9db。
2)上行
a)PUCCH
4G:调度最小单位RB。
5G:调度最小单位符号,可以放在特殊子帧。
2业务共信道
1)下行PDSCH
4G:除LTE MM外无专有导频,最高调制64QAM。
5G:有专有导频,最高调制256QAM,效率提升33%。
2)上行PUSCH
4G:最高调制64QAM。
5G:最高调制256QAM,效率提升33%。
四、信号:辅助传输,无高层信息
1信号类型
4G:测量和解调都用共用的CRS(测量RSRP PMI RICQI测相位来解调),当然LTE MM(MM:Massive Mimo,多天线技术,下同)有专有导频与CRS共享。
5G:去掉CRS。新增CRI-RS(测量RSRP PMI RI CQI),并支持BF;新增DMRS解调专用的DMRS(测量相位解调)并支持BF,所有信道都有专有的DMRS,12个端口的DMRS加上空间复用支持最大32流。
2 对比
1);覆盖
4G:CRS无BF,RSRP差。
5G:CRI-RS有BF(BF:Beam Forming,波束赋形,下同),相比LTE RSRP有9db覆盖增益(10log(8列阵子))。
2);轻载干扰
4G:轻载干扰大。无BF,干扰大一些;时刻发送,即使空载也要在整个小区内发送,对邻区有干扰;小区间错位发送,即使空载无数传也把邻区的数据给干扰了。
5G:有BF且窄带扫描,干扰小一些;可以只发送某个子带,邻区干扰小,无数传的子带不会干扰邻区;邻区间位置不错开,无对邻区的数据RE干扰。
3);容量
a);导频开销:差不多
4G:每RB中的CRS占16个RE,如果MM的话还有专有导频RE 12个。
5G:每RB中的CSI-RS 2~4个RE,DMRS 12~24个RE。
b);单用户容量
4G:协议定义了2个端口的DMRS,因此MM的时候单用户最高2流。
5G:定义了12个端口的DMRS,单用户可以最高支持到协议规定的8流,当然考虑到终端的尺寸限制,实现上估计最高也就在4流的样子。
五、多址接入
1 峰值提升9%
4G:OFDM带宽利用率90%,左右各留5%的带乱作为保护带。
5G:F-OFDM带宽利用率983%(滤波器减少保护带)。
2 上行平均提升30%
4G:上行使用单载波技术。优势:因为PAPR低,发射功率高,在边缘覆盖好;劣势:因为是单载波,单用户数据必须在连续的RB上传输,容易造成RB数不够传输一个用户数据而浪费;用户配对是1对1的,如两个用户需要的资源不一样大,就造成浪费。
5G:使用单载波多载波自适应。边缘用户使用单载波,覆盖好;中近点用户使用多载波,用户可以1对多配对,用户配对效率高,资源利用率高;用户资源分配可以用不连续的RB资源,有频选增益,以及可以完全利用零散的RB资源。
六、信道编码
4G:业务信道Turbo,控制信道卷积码、块编码以及重复编码。
5G:LDPC码-业务信道,大数据块传输速率高,解调性能好,功耗低;Polar码-控制信道,小数据块传输,解调性能好,覆盖提升1dB。
七、BF权值生成
4G:TM7/8终端:基于终端发射SRS,基站根据SRS计算权值;TM9终端(R10版本及以上):终端发射SRS基站计算权值(中近点)与终端根据CRS计算PMI(远点)自适应。
5G:终端发射SRS基站计算权值(中近点)与终端根据CRS计算PMI(远点)自适应;SRS需要全带宽发射,在边缘的时候因收集功率有限,到达基站时候可能已经无法识别了,而PMI制式一个index,只需要1~2个RB就可以发给基站了,覆盖效果好。
八、上下行转换
4G:每个帧(5ms/10ms)上下行转换一次,时延大。
5G:更大的载波带宽以及自包含时隙,实现快速反馈,时延小。
九、大带宽
4G:最大支持20MHZ;
5G:最大支持100MHZ(C波段),400MHZ(毫米波);
十、载波聚合
4G:8CC;
5G:16CC;
十 一、5G相比4G容量增强
1 下行
1);MM:持平
5G最关键的技术,大幅度提升频谱效率;LTE也有MM,从LTE经验看,MM的频谱效率大概是2T2R的5倍左右
2);F-OFDM:提升9%
5G的带宽利用率提升了9%;
3);1024QAM:<5%
峰值提升25%;但是考虑到现网中很难进入1024QAM,预估平均吞吐量增益小于5%;
4);LDPC:不清楚
5);更精确的反馈:20%~30%
终端SRS在终端四个天线轮发,基站获取终端的全部4个信道的信息,而使单用户多流以及多用户之间的MIMO调度与协调更优;SRS与PMI自适应,在边缘SRS不准时,使用PMI是的BF效果相比LTE更优。
6);开销:基本持平
5G在减少CRS的同时,其实是增加了CRI-RS和DMRS,较少和增加的开销一致,不能说CRS free后,相对于LTE开销减少了。CRS free其实是为了减少轻载时的干扰。
7) ;Slot聚合:10%
4G:每两个slot都要发送DCI Grant信息。
5G:多个slot聚合,只发送一个DCI Grant信息,开销小。
2 上行
1);MM:持平
2);单、多载波自适应:30%
用户一对多不对齐配对,RB不连续分配;
3);LDPC:未知
十二、5G相比4G覆盖增强
1 下行
1)LDPC:未知
2)功率:2dB
LTE功率120w,5G功率200W。
2 上行
1)LDPC:未知
2) 上下行解耦:11dB+
十三、5G相比4G时延增强
1 短TTI
5G最短调度时长由LTE的1ms缩短到最短1/32毫秒。
2自包含
把上下行反馈时长间隔缩短到单个slot里面,最短1/32毫秒内。
3 上行免授权
上行免授权接入,减少时延。
4 抢占传输
URLLC抢占资源。
5导频前置
终端处理DMRS需要一定的时间。
6 迷你时隙
选取几个符号作为传输调度单位,将调度时延进一步压缩。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)