物联网天线定义是什么?

物联网天线定义是什么?,第1张

天线是将射频信号由传输线辐射到空气中或从空气中接收到传输线上的一种装置,也可视为一种阻抗转换器或者一种能量变换器,它把传输线上传播的导行波,变换成在无界媒介中传播的电磁波,或者进行相反的变换。
对于设计一个应用于射频系统中的无线收发设备,天线的设计和选择是其中的重要部分,良好的天线系统可以使通信距离达到最佳状态,同类型天线大小与射频信号的波长成正比,信号的频率越低,所需的天线越大。

解:
a 已知带宽B=1MHz,信噪比SNR=63
由香农公式C= B log2(1+SNR)
=106×log2(1+63)
=6Mbps
b.若数据率为最高理论上限的2/3,则有奈奎斯特公式得:
2/3C=2B log2M
2/3×6×106 =2×106×log2M
2= log2M
M=4
注:其中的106其实是10的6次方,log2其实是底为2的log函数,因为文本无法输入公式的原因,主要是香农公式,与奈奎斯特公式,多看书就明白
信道的定义:
一是指词语,表示知道的意思,二是指通信的通道,是信号传输的媒介。
信息是抽象的,但传送信息必须通过具体的媒质。例如二人对话,靠声波通过二人间的空气来传送,因而二人间的空气部分就是信道。邮政通信的信道是指运载工具及其经过的设施。无线电话的信道就是电波传播所通过的空间,有线电话的信道是电缆。每条信道都有特定的信源和信宿。在多路通信,例如载波电话中,一个电话机作为发出信息的信源,另一个是接收信息的信宿,它们之间的设施就是一条信道,这时传输用的电缆可以为许多条信道所共用。在理论研究中,一条信道往往被分成信道编码器、信道本身和信道译码器。人们可以变更编码器、译码器以获得最佳的通信效果,因此编码器、译码器往往是指易于变动和便于设计的部分,而信道就指那些比较固定的部分。但这种划分或多或少是随意的,可按具体情况规定。例如调制解调器和纠错编译码设备一般被认为是属于信道编码器、译码器的,但有时把含有调制解调器的信道称为调制信道;含有纠错编码器、译码器的信道称为编码信道。
所有信道都有一个输入集A,一个输出集B以及两者之间的联系,如条件概率P(y│x),x∈A,y∈B。这些参量可用来规定一条信道。
输入集就是信道所容许的输入符号的集。通常输入的是随机序列,如X1,X2,…,Xn,…,各X∈A(r=1,2,…)。随机过程在限时或限频的条件下均可化为随机序列。在规定输入集A时,也包括对各随机变量X的限制,如功率限制等。输出集是信道可能输出的符号的集。若输出序列为Y1,Y2,…,Yn,…,各Y∈B。这些X和Y可以是数或符号,也可以是一组数或矢量。
按输入集和输出集的性质,可划分信道类型。当输入集和输出集都是离散集时,称信道为离散信道。电报信道和数据信道就属于这一类。当输入集和输出集都是连续集时,称信道为连续信道。电视和电话信道属于这一类。当输入集和输出集中一个是连续集、另一个是离散集时,则称信道为半离散信道或半连续信道。连续信道加上数字调制器或数字解调器后就是这类信道。
输入和输出之间有一定的概率联系。信道中一般都有随机干扰,因而输出符号和输入符号之间常无确定的函数关系,须用条件概率P(y1,y2,…,yn|x1,x2,…,xn)来表示。其中各x和y(r=1,2,…,n)分别是输入随机序列和输出随机序列的样,且x∈A,y∈B。当这条件概率可分解成的形式时,信道称为无记忆信道,否则就是有记忆信道。无记忆意味着某个输出样y只与相应的输入样x有关,而与前后的输入样无关。当只与前面有限个输入样有关时,可称为有限记忆信道;当与前面无限个输入样有关,但关联性随间隔加大而趋于零时,可称为渐近有记忆信道。此外,当上式中的P1,P2,…等条件概率是同样的函数时,称为平稳信道。这也适用于有记忆信道,即变量的下标顺序推移时,条件概率的函数形式不变。
输入和输出都是单一的情况,这类信道是单用户信道,或简称为信道。当输入和(或)输出不止一个时,称为多用户信道,也就是几个用户合用一个信道。但当几个用户的信息通过复用设备合并后再送入信道时,这个信道仍为单用户信道。只有当这个信源分别用编码器变换后再一起送入信道,或在信道的输出上接有几个译码器分别提取信息给信宿,也就是信道的输入端或输出端不止一个时,才称为多用户信道。当有几个输入如Xa,Xb,…而输出只有一个Y时,习惯上称为多址接入信道。它可用条件概率P(y|Xa,Xb,…)来规定;当只有一个输入X,而输出有几个Ya,Yb,…时,就称为广播信道,可用条件概率P(ya│x),P(yb│x),…来规定。广播信道还有一个特例称为退化型广播信道,此时各条件概率应满足下列各式:就是说,x,ya,yb,yc,…组成马尔可夫链。一般的多用户信道可以有几个输入和几个输出。当然多用户信道也有离散和连续,无记忆和有记忆之分。
其实,上述分类是可以组合的,例如平稳无记忆离散信道,正态无记忆平稳连续信道等。后者是指P(y│x)为正态分布,这种信道常简称为高斯信道。

1、传输速率不同

从传输速率看,5G移动通信传输速率可达10Gbps,比4G网络的传输速度快十倍到百倍,解决海量无线通信需求,将实现真正的“万物互联”;5GWiFi的入门级速速率是433Mbps,这至少是现在WiFi速率的三倍,一些高性能的5GWiFi还能达到1Gbps以上。

2、应用场景不同

从应用场景来看,5G移动通信商业化之后,可以实现连续广域覆盖、热点高容量、低功耗大连接、低时延高可靠 5G 应用场景。移动互联网和物联网是未来移动通信发展的两大主要驱动力,将为 5G 提供广阔的前景,譬如移动医疗、车联网、智能家居、工业控制、环境监测等物联网应用。

SKYLAB的5G WiFi模块都是能同时覆盖5GHz和24GHz两大频段的双频WiFi模块,相比于24G单频段无线路由器,它具有更高的无线传输速率,具备更强的抗干扰性,无线信号更强,稳定性更高,不容易掉线。

因此,广泛应用于80211ac WiFi AP、路由器、IOT、网络服务路由器、家庭安全网关、热点分享、USB存储共享、SD卡数据共享等领域,为客户提供速率更高的WiFi解决方案。

3、使用协议不同

第五代移动电话行动通信标准,也称第五代移动通信技术,是4G之后的延伸;5G WiFi是指采用80211ac协议,运行在5Ghz频段的WiFi。

WiFi协议标准包括80211a(第一代)、80211n(第四代,同时运行在24Ghz和5Ghz双频段)和80211ac(第五代),而只有采用80211ac协议的WiFi才是真正5G WiFi)。

参考资料来源:百度百科-WIFI

参考资料来源:百度百科-5G

5G建设意义——推动消费互联网到产业互联网的转变

到目前为止,互联网的发展经过三个时代:桌面办公互联网为第一个时代的应用,第二个时代便是乔布斯用苹果手机和App
Store应用商店重新定义的娱乐消费互联网,如今我国即将迎来互联网应用的第三个时代,即互联网在实体经济中的基础应用,产业互联网。

早在2015年3月的全国两会上就已提出一个概念,叫“互联网+”,指出互联网将跟传统产业和实体经济进行深度融合,进入互联网的“互联网+”时代,即开启我国消费互联网到产业互联网的转变,但从“互联网+”概念的提出到今天我国将产业互联网建设真正开始落实却间隔了5年的时间。原因正是因为缺乏技术,万物联网的设想无法实现。而5G的出现正好成为我国互联网模式转变的强有力技术支持。5G是移动通信技术的全新升级,5G网络的主要优势在于传输快、延迟低以及多服务。

5G建设现状——产业蓬勃发展

目前,我国已建成5G基站超过13万个。为了加快5G“新基建”建设进度,2020年3月12日,中国电信宣布与中国联通在2020年三季度将完成全国25万座5G基站共建工作。中国铁塔也表示截至2020年3月初,中国铁塔累计建成5G基站超20万座,2020年全年计划部署50万座。此外,中国移动已全面完成5G一期工程建设,在50个城市实现5G商用。2020年3月6日,中国移动正式启动了2020年5G二期无线网主设备集中采购,共有28个省、自治区、直辖市发布集采,需求数量总计232143个5G基站。力争2020年底5G基站数达到30万,确保2020年内在全国所有地级以上城市提供5G商用服务。

5G建设应用——个人消费与产业渗透并进

个人消费方面,结合5G具有传输快的优点,移动宽带的增强将引起个人消费终端的更换。以手机为例,在4G出现以前人们日常用手机多以键盘机为主,屏幕普遍较小,多数不具有浏览以及拍照功能,手机主要为人与人之间沟通搭建桥梁。而在4G出现以后,智能手机出现,手机键盘被更大的屏幕取代,功能性也得到了极大的提升。除了基本通话功能以外,摄像、视频、基础办公、线上购物等功能纷纷上线,为人们生活带来了极大的便利。5G的出现势必也会引起手机新一轮的变革。

此外,5G的出现将万物互联的实现向前推进了一步,工业制造、供应链管理、
进销存管理、信息整合等多方面的产业应用均可引入5G,实现企业一体化运作的规划与监控。目前我国正逐渐完成5G技术在各个产业中的渗透。例如,在2020年中国爆发的新型冠状病毒疫情中,5G就以“大带宽、低时延、广联接”的特性,在疫情防控中发挥了重要作用。运营商联合华为、中兴等设备供应商为包括火神山、雷神山在内的全国各地百余家重点医院提供5G网络覆盖。基于5G的全天候“云监工”、灵活调动医疗资源的“5G+远程会诊”和人群密集区域“5G+热成像”等应用,有效支撑了疫情防控。

以上数据来源及分析请参考于前瞻产业研究院《中国5G产业发展前景预测与产业链投资机会分析报告》。


音频光端机就是发射端把传统的音频模拟信号转换成光信号,通过光纤传输到接收端,在接收端再转换成模拟信号的一种音频设备。 1、比特率:
16bits 20bits 24bits,比特率越高越能细致地反映声音的细微变化。
2、采样精度:
48K 96K(CD的采样精度为441KHz/s),专业的音频光端机一般采用48K采样,96K是未来的一个方向。
3、信噪比
即我们通常说的 动态范围,单位是DB,动态范围和比特率的关系是:比特率每增加1比特,动态范围就增加6dB。16比特时,动态范围是96dB。这可以满足一般的需求了,24比特可以做到144 dB的动态范围,是发烧级的。所以目前专业的光端机指标可以总结为:24比特 48K采样 90DB 。
音频光端机分为1~N路音频或者加上1路控制数据,还要注意音频中单声道/双声道(及立体声),单向/双向,平衡输出/非平衡输出的细节。 数字非压缩传输
●视频采用8位数字编码
●彩色图像信号
●高质量实时传输
●10 Hz -24 kHz 声音频宽
●完全兼容NTSC, PAL, SECAM制式图像
●可传输RS232, RS485, RS422标准数据
●可同时传输以太网信号
●指示灯能帮助对系统故障做出快速诊断
●在各种户外条件下的高可靠性
●支持网管功能
●安装简易,无需调节 1光跳线
主要起到连接作用,它将光端机和光纤连接起来。那么,从光跳线两端的连接器上来看,光跳线分为FC跳线、ST跳线、SC跳线;从光跳线的长度来看,它可分为3米跳线、5米跳线、10米跳线等。
常用光纤规格:单模:8/125μm,9/125μm,10/125μm 多模:50/125μm,欧洲标准 625/125μm,美国标准 工业,医疗和低速网络:100/140μm,200/230μm 塑料:98/1000μm,用于汽车控制
2.终端盒
终端盒又称熔接盒,主要是保护光跳线和光纤之间的熔接处,通过光纤熔接机将光纤与跳线熔接进终端盒内。通常情况下,在前端每个光发射机处分别需要一个终端盒,在中心控制室只需要一个终端盒。终端盒从它的容积上看,可以分为8口、12口和24口。
3.法兰盘
法兰盘也是一种连接器,通常光端机上有一个光纤接口,这就是法兰盘,也就是连接光跳线和光端机的一个连接器。从它的规格上来看,它可以分为FC、ST、SC三种。
4、光熔接机
它主要是通过电极,在瞬间放电的情况下,将光纤与光跳线熔接在一起,在熔接时,要注意光纤端面要切割整齐,并保持端面的干净。
5、OTDR光时域反射仪
这是一种检测仪器,它主要检测在光纤传输中,是否有光纤断裂的情况。
6、光功率计
从字面上看,它是一种测功率的仪器,但它测的不是电压功率,而是光纤传输中光的功率,以及光在传输过程的衰减大小。
工程的应用中,我们用到的音视频光端机不同于电话光端机的应用:
1)音视频光端机通常是音频信号与视频信号一起应用于安防系统中,用来传输监控的摄像头视频和监听头音频;而电话光端机称为PCM,属于传统的电信产品,比如通过光纤传输30路程控电话。
2)传统2M网如果要传输视频则需要配备音视频编解码器,这样音视频就可以通过SDH网传输
3)市场中,音视频光端机是按照路数来区别产品报价的,有1、2、4、8、16等路数,而电话光端机则是在同一块主板上叠加,例如8路的主板上6路电话和7路电话价格差不大,30路的板子上25路和30路价格差不大。
4)音视频光端机和电话光端机都可以叠加以太网、工控数据等,具体根据各个厂家的做法而异。
5)一芯的光纤可以传输最多128路无压缩视频,一芯的光纤最多可以传输480路电话(30/E1 6E1=480) 1、光端机供电及安装环境
一般发射机由于安装位置跟随前端视频采集设备,所以安装位置都比较分散,需要配独立的机壳给其供电。在安防监控供电方面通常有两种方式:中心集中供电和本地供电,由于采用光端机传输的现场,前后端距离都较远,所以较少使用集中供电方式。接收机一般都位于监控中心的机房内,不像发射机那么分散,在供电方式上如果跟前端的发射机一样采用机壳电源供电的话,会占用机房大量空间,显得杂乱无章,无法统一管理。因此中心接收机供电可以采用插卡式机箱供电,不要把插槽全插满,可以每隔几个插槽空开一个,有利于光端机散热。需要注意的是光端机的激光器组件和光电转换模块最忌瞬时脉冲电流的冲击,因此不宜频繁开关机。 前端发射机多安装在前端配电箱中,要注意做好配电箱的防尘防水,在配电箱塞和较满时为了利于光端机散热就要考虑带风扇的配电箱。监控中心的机房要保持环境整洁,经常注意清理,不要有结尘,最好是在机房装修好后再将设备装入机房,如遇机房装修改造,要及时清理干净。机房内一般会有很多设备集中安装在机柜中,设备发热量很大,在通风散热条件又差时,最好安装空调系统以保证光端机正常工作。 安装光端机时要做好现场的防护措施,防潮、防水、防尘,同时注意现场的实际 *** 作,必须配备合适的光纤使用,不能使用残缺故障的光纤,如果不匹配,则会严重影响光端机传输质量,涉及光缆熔接时,也要注意测量光缆的光衰减或损耗在有效值范围内。
2、光端机防雷
光端机特别是作为前端设备的发射机通常安装于室外的设备箱中,现场环境相当恶劣,防雷就显得异常重要,防雷措施的优劣直接决定了光端机发生故障的几率。雷电的破坏方式主要分为直击雷、感应雷和地电位反击三种形式,对光端机而言影响最严重的主要是地电位反击。
所谓地电位反击是当避雷针等接闪器将直击雷强大的雷电流经过引下线和接地体泄入大地时,在引下线,接地体以及与其相连的金属物体上会产生相当高的瞬间电压,这个高电压会对离他们很近但是又没有直接接触的金属物体、线缆等电子设备之间产生巨大的电位差,这个电位差引起的电击就是地电位反击。地电位反击是通过以下形式对光端机造成损坏的:当雷电流泄入大地时,接地网的地电位会在数微秒之内被抬高到数万或数十万伏。高度破坏性的雷电流将从各种设备的接地部分流向这些设备,或者通过击穿大地绝缘而流向其它附近设备,最终造成设备的破坏或损害(破坏示意图见图2),损坏的部分主要有:机壳电源的PCB板上电子元器件、视频接口处芯片及其相关电子元器件、音频及数据端口处芯片。
虽然雷电的破坏形式多种多样,但还是可以通过采取科学的防护措施来降低光端机故障发生几率。首先,保证接地装置效果良好是防雷措施的前提,因为所有感应电流最后都是要泄入大地的。一般而言,接地电阻越小泄流效果越好,通常将接地电阻控制在4欧姆以内为佳,可使用接地钳表对接地电阻进行测量。对于某些土壤电阻率高的地方,可以考虑在土壤中加入降阻剂,从而降低接地电阻。其次,前端设备要加装浪涌保护器,正常电压时,浪涌保护器呈高阻状态,只有很小的泄漏电流,功率损耗很小,当线路中出现过压时,浪涌保护器呈低阻状态,过电压以放电电流的形式通过浪涌保护器流入大地,过电压被抑制下来,浪涌电压过后,线路电压恢复正常时,浪涌保护器又呈高阻绝缘状态,因此浪涌保护器必须有良好的接地装置与之配合。前端摄像机的视频信号输出口和发射机的视频输入口处接浪涌保护器,若发射机连有其他一些数据线时,需要在控制信号线的起始端和结束端加装数据防雷器,并在摄像机和光端机的电源输入端也加上电源防雷器等防雷设备。装防雷器时务必使防雷器紧贴接入口,若防雷器距离视频口、数据口太远是发挥不了防雷效果的。
加好防雷设备后,剩下的便是接地网的设计问题。接地桩一定要打到位,保证光端机良好接地,一个好的低阻抗接地网设计能够保证系统中的防雷设备发挥良好效果且能有效均衡整个传输系统内各部位电压,防止地电位差对线路中设备的干扰,同时也可有效避免地电位反击对设备的损坏。
3、光端机的调试
做好以上几点后,就要开始正常的调试了,主要是对光纤和数据通道的调试。由于光端机数据的可选类型较多,根据现场的实际需求不同,现场使用的光端机数据类型也不尽相同,在调试时一定要参照相应的说明书,按照说明书上的数据拨码和接口定义来进行数据接线。
由于光端机现场安装的环境复杂,有些用户在调试不通的情况下通常首先怀疑产品有故障,其实光端机产品技术已非常成熟,产品出厂前都经过反复测试与拷机,所以产品本身问题可能性较小,因此,在现场有问题时首先需要考虑的是安装问题,可以从以下几个方面去排查:
·光纤本身没有经过测试,光路不通或不稳定或光衰减过大等;
·前端设备故障,如摄像机没有视频或没通电等;
·后端设备故障,如监视器无视频,键盘控制协议不对,本身不能控制等;
·连接线路故障,如视频头没的焊接好不通,控制线接错,或连接线交叉接错、接反等。
以上现象尤其是线路故障发生的概率最大,在遇到问题时需要仔细检查。排除故障时,可以采用排除法,一个设备一个设备排除,最后准确判断问题关键所在。在判断光端机是否有问题时建议用户将发射机与接收机放在一起近距离测试,如若还不通,则为光端机本身故障,就需要跟厂家联系调换了。为了减少问题,用户尽可能在安装前,近距离测试光端机,这样便能快速通过安装与调试,节省工期。
4、光端机日常保养
通常状况光端机的工作环境相当恶劣,使用时要注意保持光纤头的清洁。光端机对灰尘非常敏感,而由于光端机运输过程中或是客户使用一段时间后,都有可能在光纤口处出现灰尘或杂物造成堵塞,从而影响视频及数据的正常传输,此时可使用工业无水酒精和无尘纸对光纤头进行清洗,避免粘附灰尘。
光端机内部的光纤跳线与外部光纤是通过适配器连接的,通常适配器为陶瓷管芯,在插拔光纤头时要特别注意,切勿用力不当以防将陶瓷套管挤裂或是压碎,造成光端机无法正常传输信号。 光端机是光通信系统中的传输设备,主要是进行光电转换及传输功用。光端机一般成对使用,由发射端和接收端构成。发射端将用户端的模拟信号通过放大、A/D转换、复用等处理,最后通过电/光转换把电信号转换成可经光纤传输的光信号由光纤传输到接收端。在接收端则进行相反的处理,先经过光/电转换把接收的光信号还原为电信号,电信号解复用,再通过D/A及放大滤啵送给客户端。不同种类光端机原理都是这样的。常说的光端机指的是用于监控系统用来传输视频、数据、以太网、音频等综合信息的光端机。主要分模拟光端机和数字光端机。基于传输的介质的不同有单模光端机和多模光端机之分。
数字光端机是将所要传输的图像、语音以及数据信号进行数字化处理,再将这些数字信号进行复用处理,使多路低速的数字信号转换成一路高速信号,并将这一信号转换成光信号。在接收端将光信号还原成电信号,还原的高速信号分解出原来的多路低速信号,最后再将这些数据信号还原成图像、语音以及数据信号。模拟光端机就是将要传输的信号进行幅度或频率调制然后将调制好的电信号转化成光信号。在接收端将光信号还原成电信号,再把信号进行解调,还原出图像、语音或数据信号。
数字光端机传输信号质量高,没有模拟调频、调相、调幅光端机多路信号同传时的交调干扰严重、容易受环境影响、传输质量低劣、长期工作稳定性差的缺点,因此,数字光端机将逐渐取代模拟光端机。
光端机多用与监控系统中,当同轴电缆传输距离不够时候采用光缆传输可采用光端机光端机不仅可传输视频信号还可以传输音频信号即现场的视\音频一起传输到控制中心,最常见利用光端机的例子就是十字路口的监控一般这些摄象机离控制中心都几公里远用铜缆+放大器都无法达到距离的时候采用光端机用光缆传输。
目前在高速公路、交通、电子警察、监控、安防、工业自动化、电力、海关、水利、银行等领域,视频图像、音频、数据、以太网等光端机已开始普遍大量应用。 用户在选择音频光端机时一般从它的先关参数和实用性考虑,相关参数在光端机出厂说明书都有具体说明,再次我们从实用性方面讲述下音频光端机的选择。
1、外观大方,结构合理
音频光端机技术含量高,其外观应小巧精致,美观大方,整体结构必须尽量的符合工程安装要求。一般室内型数字视频光端机除采用19 寸机柜外,还应能兼顾工程中将光端机置于桌面或壁挂的需要。数字光端机 另外,音频光端机还必须具有良好的散热性能和电气接触性能。
2、接口丰富,布局合理
音频光端机除要求足够的视频接口外,还可能要求或者将来可能要求配备其他功能丰富的接口,如高保真音频接口、电话接口、异步数据接口、以太网接口和开关量接口等,这就要求选择的数字视频光端机必须具备系统升级能力,不至于因网络升级或系统功能改变而完全更换设备,从而保护用户的前期投资,电话光端机接口种类多,数量多,与这些接口相配套的可能还有一些模式设置拨码开关,所有这些元素构成的用户 *** 作界面应该布局合理,接口间留有相当的 *** 作空间,方便工程安装和维修,例如视频接口太过密集,实际应用中就会出现了为维修某一个视频接头,必须拔掉其他正常视频接头的尴尬局面。
3、 指示灯含义明确,方便工程开通和维护
为方便工程开通和工程维护,电话光端机应标示有含义明确的指示灯。除电源指示灯外,数字视频光端机的收发端机都必须具备视频有无指示灯,指示相应的视频通道有无视频信号输入或输出,工程人员和用户在工程开通阶段和工程维护阶段就可以根据视频指示灯的指示,判断开通和维护中的情况,定位故障点,尽快地解决可能发生的问题。 在选择音频光端机时,我们不仅要注意它的参数和实用性,还要注重它的的售后服务,如果所选品牌的售后服务不到位,光端机出现故障时维修检测就会相对的麻烦,会给工程带来极大的不变。
国外部分品牌(排名不分先后):
NTK、INFINOVA、ANV、Diview、BIC、CWY、STV、MRD、OSD、OPTILINKS、PELCOOPTELECOM、Meridian(子午线)、Siemens (西门子)、Alcatel(阿尔卡特)、雅图等。
国内部分品牌(排名不分先后)
光网视(ONV)、北京阳光耀华、北网通信、成都哈雷、安特视讯、成都安视、松拓网络、深圳科姆仕、成都安视、讯维、 广州银讯 、视桥光网 、 新创、 华龙、 奥普泰、 天翼讯通(WINGMAX) 、北京奥博光电子(AOBO)、北京华兴易诚、北京视得清、讯维、华诚、上海来威、北京誉华、

安卓手机中关于网络信号的测量有多个名词,这里统一解释一下。

RSRP (Reference Signal Receiving Power,参考信号接收功率) 是LTE网络中可以代表无线信号强度的关键参数以及 物理层 测量需求之一,是在某个符号内承载参考信号的所有RE(资源粒子)上接收到的信号功率的平均值。通俗得理解,RSRP的功率值 代表了每个子载波的功率值
用处和规范都等同于WCDMA中的RSCP(Received Signal Code Power)接收信号码功率。

RSRQ(Reference Signal Receiving Quality)表示LTE参考信号接收质量,这种度量主要是根据信号质量来对不同LTE候选小区进行排序。这种测量用作切换和小区重选决定的输入。
RSRQ被定义为NRSRP/(LTE载波RSSI)之比,其中N是LTE载波RSSI测量带宽的资源块(RB)个数。RSRQ实现了一种有效的方式报告信号强度和干扰相结合的效果。反映和指示当前信道质量的信噪比和干扰水平。为了使测量得到的RSRQ为负值,与RSRP保持一致,因此RSRP定义的是单个RE上的信号功率,RSSI定义的是一个OFDM符号上所有RE的总接收功率。
取值范围:-3~-195 ,值越大越好

RSSI(Received Signal StrengthIndicator接收信号强度指示):UE探测带宽内一个OFDM符号所有RE上的总接收功率(若是20M的系统带宽,当没有下行数据时,则为200个导频RE上接收功率总和,当有下行数据时,则为1200个RE上接收功率总和),包括服务小区和非服务小区信号、相邻信道干扰,系统内部热噪声等。即为总功率S+I+N,其中I为干扰功率,N为噪声功率。反映当前信道的接收信号强度和干扰程度。
rssi在无线网络中表示信号的强度,它随距离的增大而衰减,通常为负值,该值越接近零说明信号强度越高。
RSSI持续过低,说明基站收到的上行信号太弱,可能导致解调失败。 RSSI持续过高,说明收到的上行信号太强,相互之间的干扰太大,也影响信号解调。

SNR是signal to noise ratio的缩写,即信噪比,它指规定条件下测得的有用信号电平与电磁噪声电平之间的比值。在任意点上有用信号的幅度与同一点上噪声信号的幅度之比,并用分贝(dB)表示。峰值与脉冲噪声相联系,有效值则与随机噪声相联系。
一般是越大越好。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/13503239.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-08-20
下一篇 2023-08-20

发表评论

登录后才能评论

评论列表(0条)

保存