摘要:ARM7TDMI-S是ARM公司设计的一款32位精简指令集处理器内核,LPC210x系列是飞利浦半导体公司生产的基于ARM7TDMI-S内核的芯片。在嵌入式系统设计中,针对嵌入式处理器和 *** 作系统的Bootloader代码的设计是一个难点。本文根据用LPC2106进行嵌入式系统设计的实际经验,总结出基于ARM7TDMI-S内核的嵌入式处理器芯片的Bootloader代码设计的一般流程;给出LPC2106芯片在基于μC/OS-II *** 作系统的嵌入式应用中,BootLoader程序的详细设计流程及其中的一些关键技术和代码。
引言
芯片的Bootloader代码(即启动代码)就是芯片复位后进入 *** 作系统之前执行的一段代码,主要是为运行 *** 作系统提供基本的运行环境,如初始化CPU堆栈、初始化存储器系统等。Bootloader代码与CPU芯片的内核结构、具体芯片和使用的 *** 作系统等因素有关。其功能有点类似于PC机的BIOS(Basic Input/Output System,基本输入输出系统)程序,但是由于嵌入式系统的软硬件都要比PC机的简单,所以它的Bootloader代码要比BIOS程序简单得多。
嵌入式系统被定义为:以应用中为心,以计算机技术为基础,软件硬件可裁剪,适用于系统对功能、可靠性、成本、何种、功耗有严格要求的专用计算机系统。嵌入式系统的核心部件是嵌入式处理器。随着嵌入式系统在人们日常生活中的广泛运用,嵌入式处理器得到前所未有的飞速发展。基于ARM核的嵌入式处理器芯片种类繁多。由于ARM公司只设计内核的不生产具体的芯片,即便是基于同一种内核,不同厂家生产的芯片差别很大,因此不易编写出统一的Bootloader代码。ARM公司针对这一问题而采取的策略是,不提供完事的Bootloader代码(ARM公司的开发工具ADS提供了一些功能代码),Bootloader代码不足的部分由芯片厂商提供或者由用户自己编写。飞利浦公司没有提供LPC210x系列的Bootloader代码,所以用户只能自己编写Bootloader代码。
1 ARM7TDMI-S和LPC210x
ARM7TDMI-S是目前比较低端的ARM核—ARM核不是芯片,它与其它部件如RAM、ROM、片内外设组合在一起才构成实际的芯片。ARM7是用于对成本和功耗都非常敏感的消费应用的低价位、低功耗的32位核。其主要特点如下:冯.诺依曼结构、3段流水线、0.9MIPS/MHz;非常低的功耗;嵌入式ICE-RT(In Circuit EmulaTIon-Real TIme,实时在线仿真)逻辑。
LPC2104/2105/2106基于一个支持实时仿真和跟踪的ARM7TDMI-S内核,并带有128KB的高速Flash存储器,128位宽度的存储器接口和独特的加速结构,使32位代码能够在最大时钟速率下运行。由于LPC2104/2105/2106具有非常小的尺寸和极低的功耗,它们非常适合于那些将小型化作为主要要求的应用,例如存储取控制和POS机。带有宽范围的串行通信接口、片内多达64KB的SRAM,由于具有大的缓冲区和强大的处理器能力,它们非常适合于通信网关和协议转换器、软件调制解调器、声音识别以及低端的图像处理。而多个32位定时器、PWM输出和32个GPIO,使它们特别适用于工业控制和医疗系统。LPC2106是LPC210x系列的一种,其它两种为LPC2104/2105。它们都基于ARM7TDMI-S内核。三种芯片唯一的区别就是SRAM的容量大小:LPC2106是64KB,而LPC2104是16KB,LPC2105是32KB。
2 Bootloader代码
2.1 Bootloader代码的作用
嵌入式系统的资源有限,应用程序通常都是固化在ROM中运行。ROM中的程序执行前,需要对系统硬件和软件运行环境进行初始化。这些工作是用汇编语言和C语言编写的Bootloader代码完成的。在ARM处理器的嵌入式系统中,Bootloader代码的作用主要有以下几点:
*初始化CPU各种模式的堆栈和寄存器;
*初始化系统中要使用的各种片内外设;
*初始化目标板;
*引导 *** 作系统。
2.2 Bootlader代码设计的一般流程
Bootloader代码是嵌入式系统中应用程序的开头部分,它与应用程序一起固化在ROM中,并首先在系统上运行。设计好Bootloader代码是设计嵌入式程序的关键,也是系统能够正常工作的前提。Bootloader代码所执行的 *** 作主要信赖于CPU内核的类型,以及正在开发的嵌入式系统软件中需要使用CPU芯片上的哪些资源。Bootloader代码的一般流程(即Bootloader代码应该进行的 *** 作)如图1所示。
2.3 基于LPC2104和μC/OS-II是多任务的实时 *** 作系统。针对该款芯片和多任务实时 *** 作系统的Bootloader程序的流程如图2所示。
2.3.2 关键代码分析
;中断向量表,给出了CPU芯片出现异常时应该转去执行的程序地址
Vectors
LDR PC,ResetAddr
LDR PC,UndefinedAddr
LDR PC,SWI_Addr
LDR PC,SWI_Addr
LDR PC,PrefetchAddr
LDR PC,DataAbortAddr
DCD 0xb9205f80
LDR PC,[PC,#-0xff0]
LDR PC,FIQ_Addr
ResetAddr DCD Reset
UndefinedAddr DCD Undefined
SWI_Addr DCD SoftwareInterrupt
PrefetchAddr DCD PrefetchAbort
DataAbortAddr DCD DataAbort
Nouse DCD 0
IRQ_Addr DCD 0
FIQ_Addr DCD FIQ_Handler
;InitStack函数,其功能是初始化CPU各种模式的堆栈
InitSatck
MOV R0,LR ;因芯片模式切换,故将程序返回地址保存至R0,同时在初始化堆栈完成后使用R0返回
MSR CPSR_c,#0xd3 ;设置管理模式堆栈
LDR SP,StackSvc
MSR CPSR_c,#0xd2 ;设置中断模式堆栈
LDR SP,StackIrq
MSR CPSR_c,#0xd1 ;设置快速中断模式堆栈
LDR SP,StackFiq
MSR PSR_c,#0xd7 ;设置中止模式堆栈
LDR SP,StackAbt
MSR CPSR_c,#0xdb ;设置未定义模式堆栈
LDR SP,StackUnd
MSR CPSR_c,#0xdf ;设置系统模式堆栈
LDR SP,StackUsr
MOV PC,R0
StackUsr DCD UsrStackSpace+(USR_STACK_LEGTH-1)*4
StackRvc DCD SvcStackSpace+(SVC_STACK_LEGTH-1)*4
StackIrq DCD IrqStackSpace+(IRQ_STACK_LEGTH-1)*4
StackFiq DCD FiqStackSpace+(FIQ_STACK_LEGTH-1)*4
StackAbt DCD AbtStackSpace+(ABT_STACK_LEGTH-1)*4
StackUnd DCD UndtStackSpace+(UND_STACK_LEGTH-1)*4
;系统初始化代码
Reset
BL InitStack ;调用InitStack函数初始化芯片各种模式的堆栈
BL TargetReseTInit ;调用TargetReseTInit函数对系统进行基本初始化
B _main ;跳转到ADS提供的启动代码_main函数处,它初始化函数库并最终引导CPU进入 *** 作系统的main()函数
上面的程序代码只包含了流程图中的几个主机步骤。这些步骤都是必不可少的,其余的步骤都在TargetResetInit函数中加以实现。本例中的TargerReset Init函数如下:
void TargetResetInit(void)
{/*设置系统各部分时钟*/
PLLCON=1;
#if((Fcclk /4)/Fpclk==1
VPBDIV=0;
#endif
#if((Fcclk/4)/Fpclk==2
VPBDIV=2;
#endif
#if((Fcclk/4)/Fpclk==4
VPBDIV=1;
#endif
#if(Fcco/Fcclk)==1
PLLCFG=((Fcclk/Fosc)-1)|(1<<5);
#endif
#if(Fcco/Fcclk)==2
PLLCFG=((Fcclk/Fosc)-1|(2<<5);
#endif
#if(Fcco/Fcclk)==4
PLLCFG=((Fcclk/Fosc)-1|(3<<5);
#endif
#if(Fcco/Fcclk)==8
PLLCFG=((Fcclk/Fosc)-1)|(4<<5);
#endif
PLLFEED=0xaa;
PLLFEED=0x55;
while(PLLSTAT &(1<<10)==0)
PLLCON=3;
PLLFEED=0xaa;
PLLFEED=0x55;
/*设置存储器加速模块*/
MAMCR=2;
#if Fcclk<20000000
MAMTIM=1;
#else
#if Fcclk<40000000
MAMTIM=2;
#else
MAMTM=3;
#endif
#endif
/*初始化VIC,使芯片在进入μC/OS-II多任务环境前关中断*/
VICIntEnClr=0xffffffff;
VICVectAddr=0;
VICIntSelect=0;
/*其它步骤的代码与实际的软件功能相关,不具有代表性,故在此不列出*/
}
3 结论
本文介绍的Bootloader代码已经在基于Philips公司的LPC2106芯片开发的系统上运行并测试通过。针对不同的CPU芯片编写Bootloader代码,首先要了解该CPU的内核结构、指令系统,其次是具体芯片的结构和各种片上资源,以及所采用的 *** 作系统。以上所列的设计流程不是一成不变的,在具体应用中要权衡取舍。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)