2016年9月13日消息,NVIDIA在北京举办了GPU技术大会(GPU Tech Conference),这也是GTC第一次在国内举办。在这次大会上,NVIDIA发布了Tesla P4、P40深度学习芯片,此外黄仁勋也在北京与数以万计的AI、游戏行业的开发者们分享了他对GPU和未来计算的认知。以下内容是根据黄仁勋在GTC China 2016上的演讲实录整理。
一、4年以前,AlexNet第一次带来了深度学习的爆发
2012年一个年轻的研究员叫Alex Krizhevsky。在多伦多大学AI实验室,他设计了一个可以学习的软件,这个软件靠自己就能进行视觉识别。深度学习这个时候已经发展了一段时间,可能有20年。
Alex所设计的这个网络,它有一层一层的神经网络,包括卷积神经网络、激发层、输入和输出,可以进行区分。这样一个神经网络可以学会识别影像或者是规律。深层神经网络所带来的结果是它会非常有效,会超出你的想象,但是它进行训练需要的计算资源超过了现代计算机的能力,它需要几个月的时间去训练一个网络才能真正地识别图像。
Alex当时的看法是,有一个叫做GPU的新型处理器,通过一种叫CUDA的计算模式,可以适用于并行计算,用于非常密集的训练。2012年他当时设计了叫Alex的网络,提交给了一个大规模计算视觉识别大赛,是一个全球的竞赛,并且赢得了这个大赛。
AlexNet战胜了所有由其他计算视觉专家所开发的算法。Alex当时只用两个NVIDIA GTX580,在通过数据训练了几天后,AlexNet的结果和质量引起关注。所有搞计算视觉的科学家,所有的AI科学家都非常关注。在2012年,Alex Krizhevsky启动了计算机深度学习的基础,这是现代AI的一个大爆炸。他的工作和成果在全世界引起了很大反响。
我相信那个时刻会被记住,因为它确实改变了世界。之后有很多研究开始围绕深度学习进行。2012年斯坦福大学的吴教授(吴恩达)和我们开发了一个非常大规模的GPU配置用于深度学习的训练,很快在三年之后每一年都会有新的网络出来,能够不断地战胜其他方案获得更好的记录。
二、声音和视觉输入铺垫了构造AI世界的基础
到了2015年,谷歌和微软都实现了人类般的视觉识别能力。它是由软件写就的,在GPU上经过训练可以实现比人类更高的视觉识别能力。2015年百度也宣布他们的语音识别达到了超越人类的水平,这是非常重要的一个事件。这是第一次计算机能自己写程序,实现超过人类的水平。
视觉和语音是两个非常重要的感官输入,是人类智能的基础。现在我们已经有了一些基础的支柱,让我们能够进一步推进AI的发展,这在之前是难以想象的。如果声音和视觉的输入值不可靠的话,怎么能够有机器可以去学习,可以有人类一样的行为。我们相信这个基础已经有了,这也是为什么我们认为现在是AI时代的开始。
全世界的研究者都看到了这些结果,现在所有的AI实验室都开始使用GPU跑深度学习,这样他们也可以开始建立未来AI的基础。基本上所有的AI研究者都开始用我们的GPU。
GPU的核心是模拟物理世界,我们用GPU创建虚拟世界用于游戏、设计,用于讲故事,比如制作电影。模拟环境、模拟物理属性、模拟周围所看到的世界,构建虚拟世界的过程如同人类大脑在想象时进行的计算。因为深度学习的发展,使我们的工作进入新的阶段,人工智能。对人类智能的模拟会是我们所做的最重要的工作之一,而且我们对此非常激动。
三、GPU计算渗透到深度学习各个领域
今天也是我们第一次在中国举办GTC大会,这次很大一部分内容会是关于人工智能和深度学习。我们是一个计算公司,SDK对于我们来讲是最重要的产品,GTC是我们最重要的一场盛会。大家可以看一下过去几年的成长,这是非常了不起的增速。
今年GTC有16000名人员参加。下载我们SDK的开发人员增长了3倍,达到了40万开发人员。但最了不起的数字是深度学习开发人员在两年之内有了25倍的增长,现在下载我们的深度神经网络实验室引擎的开发人员已经增长了25倍,下载了5万5千次。
大家到底用它干什么呢?很多都是AI研究人员,他们来自于全球各地,现在所有的实验室都会使用我们的GPU平台来做自己的AI研究,有软件公司、互联网软件提供商,还有互联网公司、汽车公司、政府、医疗成像、财务、制造等公司。现在用GPU深度学习的领域是非常广的,非常了不起的。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)