摘要: 介绍了3DES加密算法的原理并详尽描述了该算法的FPGA设计实现。采用了状态机和流水线技术,使得在面积和速度上达到最佳优化;添加了输入和输出接口的设计以增强该算法应用的灵活性。各模块均用硬件描述语言实现,最终下载到FPGA芯片StraTIx EP1S25F780C5中。
关键词: 状态机 流水线 3DFS FPGA
随着网络的快速发展,信息安全越来越引起人们的关注。加密技术作为信息安全的利器,正发挥着重大的作用。通过在硬件设备(如由器、交换机等)中添加解密功能,可使存储和传输的数据具有较高的安全性。传统的加密工作是通过在主机上运行加密软件实现的。这种方法除占用主机资源外,其运算速度较硬件加密要慢,密钥以明文的方式存储在程序中,或者以加密的方式存储在文件或数字库中,重要数据(如个人密码PIN等)会在某一时刻以明文形式出现在计算机的内存或磁盘中,安全性较差。而硬件加密是通过独立于主机系统外的硬件加密设备实现的,所有关键数据的存储、运算都通过硬件实现,不占主机资源、速度快、安全性较高。
图1
尽管DES已被证实是不安全的算法(主要是密钥太短),但三重DES增加了密钥长度,由56位增加到112或168位,有更高的安全性,而且在新一代因特网安全标准IPSEC协议集中已将DES作为加密标准。另一方面,基于DES算法的加/解密硬件目前已广泛应用于国内外卫星通信、网关服务器、机顶盒、视频传输以及其它大量的数据传输业务中。利用3DES可以使原系统不作大的改动。所以对3DES的研究仍有很大的现实意义。
1 3DES加密算法描述
DES成为一个世界范围内的标准已经20多年了,很好地抗住了多年的密码分析,除最强有力的可能敌手外,对其它的攻击仍是安全的。DES对64位的明文分组进行 *** 作,通过一个初始置换,将明文分成左半部分和右半部分,然后进行16轮完全相同的运算,最后经过一个末置换便得到64位密文。每一轮的运算包含扩展置换、S盒代换、P盒置换和两次异或运算,另外每一轮中还有一个轮密钥(子密钥)。整体框图如图1所示。
3DES(即Triple DES)是DES向AES过渡的加密算法(1999年,NIST将3-DES指定为过渡的加密标准),是DES的一个更安全的变形。它以DES为基本模块,通过组合分组方法设计出分组加密算法,其具体实现如下:设Ek()和Dk()代表DES算法的加密和解密过程,K代表DES算法使用的密钥,P代表明文,C代表密表,这样,
3DES加密过程为:C=Ek3(Dk2(Ek1(P)))
3DES解密过程为:P=Dk1((EK2(Dk3(C)))
具体的加/解密过程如图2所示。K1、K2、K3决定了算法的安全性,若三个密钥互不相同,本质上就相当于用一个长为168位的密钥进行加密。多年来,它在对付强力攻击时是比较安全的。若数据对安全性要求不那么高,K1可以等于K3。在这种情况下,密钥的有效长度为112位。
2 FPGA设计实现
2.1 FPGA设计的优势
用硬件实现某种密码算法,首先要用硬件描述语言(如HHDL、Verlog HDL)进行系统设计和编码,然后采用专用集成电路(ASIC)或现场可编程逻辑门阵列(FPGA)来具体实现。采用ASIC方法设计周期较长,且费用也较昂贵;而采用FPGA,可由设计者自己对芯片内部单元进行配置,设计比较灵活,只需改变配置就可实现安全不同的功能,大大缩短了设计周期和开发时间,节省人力物力,同时经过优化可以达到较高的性能。另外,有多种EDA开发软件支持FPGA的设计,在本设计中作者采用了ALTERA公司的Quartus II开发软件。
2.2 状态机和流水线技术的应用
面积和速度这两个指标贯穿着FPGA设计的始终,是设计质量评价的终极标准。设计目标就是在满足给定的时序要求(包含对设计频率的要求)的前提下,占用较小的芯片面积;或者在所规定的面积下,使设计时序余小量更大,频率更高。通过功能模块复用可减少设计消耗的芯片面积;反之,并行复制多个 *** 作模块可较大地提高设计频率。在本设计中充分考虑了这一对矜持体,采用状态机和流水线相结合的技术,使得在减少芯片资源消耗的情况下又能提高设计频率。
状态机是组合逻辑和寄存器逻辑的特殊组合,尤其适合于数字系统的控制设计。系统的状态在一定的条件下相互转移。分析DES的算法结构可以发现,轮运算是相同的,只是输入子密钥不同,同时各轮的子密钥都可以通过密钥移位再经过一个压缩置换 *** 作直接得到,所以通过密钥移位现经过一个压缩置换 *** 作直接得到,所以将轮运算作为一个共享模块,反复进行该 *** 作,其输入参数由状态机控制部分提供,主要是密钥移位的位数。只在空闲状态下将轮运算结果输出。因数据端是16位,故每个状态机模块中进行四轮轮运算。
流水线处理是高速设计中的一个常用设计手段。如果某个设计的处理流程可分为若干步骤,而且整个数据处理是“单流向”的,即没有反馈,前一个步骤的输出是下一个步骤的输入,则可以考虑用流水线设计方法提高系统的工作频率。流水线设计是一种技巧,它在很长组合路径的中间点引入寄存器。寄存器会增加等待时间,但却能增加速度,减少逻辑级。此外,附加寄存器虽然会增加一定的功耗,但却极大地减少了毛刺。流水线处理方式之所以频率较高,是因为复制了处理模块,它是FPGA设计中面积换取速度思想的具体体现。DES的16轮运算结构是相同的,符合流水线设计的要求,所以基于DES的结构特点,将前面的状态机模块作为流水线的一个单元,这样DES共有四个状态,串联起来形成四级流水线。因状态机中有寄存器,能保证流水线的工作,所以各单元间不需再加寄存器。状态机及流水线结构如图3所示,图中给出了由密钥直接生成各子密钥的移位数。将DES模块复制三份,就形成了16级流水线,所不同的是流水线内部是状态机结构,所以每四个时钟周期才会得到一组加/解密结果。这种结构同样适用于数据端是8位和32位的。
2.3 S盒的设计和接口设计
在3DES算法中,S盒代替是算法的关键所在。其它的运算都是线性的,易于分析和实现,而S盒是非线性的,因此S盒的设计和优化将直接影响整个系统的性能。DES的8个S盒都是6输入、4输出的结构,适合于用ROM来实现,因此用VHDL定义如下结构设计的ROM:
input:in std_logic_vector(5 downto 0);
output :out std_logic_vector(3 downto 0);
subtype s_word is std_logic_vector(3 downto 0);
subtype s1_rangeij is integer range 0 to 63;
type s_type is array(s1_rangeij) of s_word;
constant s:s_type:=(("1110"),("0100"),("1101"),("0001")……);
funcTIon logic2int(din:std_logic_vector(t downto 0))return s1_rangeij -二进转换为十进制
output<=s(logic2int(input));
经综合后,每个S盒只用了24个逻辑单元。
3DES是64位分组大小的加密算法,数据线一般是8位、16位或32位,为此增加了输入、输出接口,这部分接口完成的功能就是串/并转换和并/串转换。以16位输出接口为例,设计中将加/解密出来的数据从低位到高位在valid信号有效的情况下同时存入四个16位寄存器,再通过一个选择器依次将数据送出。该选择器不同于普通的多路选择器,它是由valid信号触发其内的计数功能,从而依次将寄存器中数据输出,如图4所示。输入接口要简单一些,只需一个64位可移位的寄存器,在第四个16位数据到来后才将这一组64位数据送给加密模块。这种结构非常容易用硬件描述语言实现。
2.4 总体结构
通过一个密钥控制模块为3DES提供三个56位的密钥以及加/解密控制信号。密钥的输入是28位的,所产生的三个56位密钥并不是同一时间提供给3DES的,相互之间有16个时钟的延时,这样可以保证修改密钥后并不影响先前流水线的工作。再加上输入、输出接口就构成了该设计的总体结构,如图5所示。限于图的大小,不影响理解的部分信号没有画出。加/解密的流程是先输入六组28位的密钥,然后就可以发送需要加/解密的数据了,中间可以有间断,如果需要更改密钥,也是先输入改后的密钥,再输入数据,可实时更改,无需等到流水线中最后一组数据加/解密完成。
本设计在ALTERA公司的Quartus II环境下用VHDL、Verilog HDL实现设计输入,采用同步时钟,成功编译、综合、适配和仿真,并下载到StraTIx系列FPGA芯片EP1S25F780C5中。在综合的过程中用逻辑锁等技术进行了优化。消耗逻辑单元16250个,设计时钟频率可达95.07MHz。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)