利用可寻址远程传感器数据通路 (HART) 协议,过程测量与控制器件可通过传统4-20mA电流环路实现通信。这种协议使用1200 Hz和2200 Hz频率的移频键控 (FSK)。此处,一个 1200Hz 周期代表一个逻辑 1,而两个 2200Hz 周期代表逻辑 0。由于 FSK 波形的平均值始终为 0,因此模拟 4-20mA 信号不受影响。
理想情况下,FSK 信号由叠加在 DC 测量信号上的两个频率正弦波组成。但是,相连续 FSK 正弦波的生成是一种十分复杂的过程。因此,为了简化 HART 信号波形的生成过程,HART 规范的物理层对参数极限值进行了定义,标准化波形的振幅、形态和转换速率均不得超出这些参数极限值。在这种情况下,一种梯形波形非常适合于这种应用,图 1 显示了其各个极限值。
图 1 梯形HART电流波形的最小与最大值
图 2 所示 HART 发送器提供了一种简单且低成本的解决方案,其产生一个梯形 HART 波形,并将它叠加在一个可变 DC 电平上,最终把产生的输出电压转换为电流环路。
图 2 低成本 HART 发送器
由 R4 和 R5 组成的第二个分压器,将 5V 电源分为一个 VREF = VCC/2 的基准电压,即 2.5V。只要“激活”为低电平,G2 的输出便为低态,而 G3 输出为高态。由于高阻抗负载,NAND 输出拥有轨到轨功能;R1=R2 时,A1 非反向输入 VIN 的输入电压也为 2.5V。
当“激活”为高态时,G2 和 G3 输出相互换相,从而在 VIN 下形成一个小方波,其围绕 VREF 对称摆动。VIN 的峰值到峰值振幅为:
VS 为正 5V 电源,而 R1|| R2 为 R1 和 R2 的并联组合。
把图 2 的电阻值插入方程式得到 VIN(PP)=200Mv 的输入电压摆动,其让VIN摆动位于2.4V和2.6V之间。当 VIN 升至 2.6V 时,A1 的输出立即达到正饱和状态,并通过 R6 和 R7 对 C3 充电。C3 (VHART) 的实际 HART 电压线性上升,直到达到 2.6V 为止。这时,放大器 A1 迅速退出饱和状态,并起到一个电压跟随器的作用,从而将 VHART 保持在 2.6V。当 VIN 下降至 2.4V 时,A1输出进入负饱和状态,并通过 R6 和 R7 对 C3 放电。之后,VHART 线性下降,直到其达到 2.4V 为止。这时,A1 退出饱和状态,并再次起到一个电压跟随器的作用,将 VHART 保持在 2.4V。
由此产生的梯形波形在振幅方面与 VIN 相等,并且围绕 VREF 做对称摆动。它的转换速率计算方法如下:
其中,VSAT 为 A1 的正或负输出饱和电压。
由于 VHART 的 AC 电流比VSAT 小,因此 VHART 可以由其静态电平 VREF 得到近似值。另外,A1 轨到轨输出能力结合 R6 负载高阻抗,可得到 5V 和 0V 的输出饱和电平。假设 R7 远小于 R6,则前面表达式可简化为:
如果我们把图 2 的 R6 和 C3 组件值插入方程式,则梯形波形的转换速率结果为 ±1.25 V/ms。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)