上世纪90年代中期,英特尔决定把SRAM整合到自己的处理器中,这给世界各地的独立式SRAM供应商带来“灭顶之灾”。最大的SRAM市场(PC高速缓存)一夜之间销声匿迹,只留下少数细分市场应用。SRAM的“高性能存储器(访问时间短、待机功耗小)”价值主张因其较高的价格和容量限制(目前的最高容量是288Mb)而高度受限。由于SRAM每个单元有四到六个晶体管,几乎无法与DRAM和闪存竞争(这两种存储器每个单元只有1个晶体管);每个单元的晶体管数越少就意味着板容量和成本越低。因此,对构成98%的市场总额的传统存储应用而言,SRAM是一种不切现实的解决方案。
自英特尔开始嵌入SRAM以来,大多数SRAM供应商已经做出相应调整,或关闭工厂,或丰富SRAM之外的其它产品组合。对SRAM的运用则转向要求高性能的专门应用,主要包括工业、汽车和国防领域。SRAM的整体市场在2002年到2013年间的年均复合增长率(CAGR)为-13%。然而,若认为这种技术已经日薄西山还为时尚早。实际上,由于种种因素的作用,在未来几年我们预计将会看到长期被冷落的SRAM东山再起。在本文中,我们将探讨让SRAM重获新生的技术进步以及使之能够满足未来需求的SRAM技术发展趋势。
SRAM回归主流嵌入式设计
SRAM回归主流设计的动力非常耐人寻味,力图取代SRAM的潮流忽然发生逆转。英特尔决定嵌入SRAM,这在当时是个非常英明的决策。SRAM不仅成本效益更高,而且还是技术一流的解决方案。与外部SRAM相比,嵌入式SRAM的存取时间更为出色,要知道对于高速缓存存储器而言,存取时间是最关键的因素。
自那时起到现在,处理器功能变得更加强大,而且尺寸越来越小。随着处理器的功能日渐强大,它们要求高速缓存存储器性能也要有大幅改善。但与此同时,随着每一代新工艺节点的问世,不断增大嵌入式高速缓存存储器的容量成为一项越来越艰巨的挑战。SRAM拥有六晶体管架构(逻辑区一般为四晶体管/单元)。这意味着随着工艺节点的缩小,每平方厘米的晶体管数量将会极高。这样的高晶体管容量可能导致许多问题,包括:
发生软错误的几率增大:随着工艺技术从130nm缩小到22nm,软错误率预计将增长七倍。
产量降低:由于晶体管容量增大,加上位单元不断缩小,SRAM的面积更容易受工艺变化所造成的瑕疵的影响。这种瑕疵会降低处理器芯片的总产量。
功耗增加:如果SRAM位单元必须与逻辑位单元的大小相同,那么SRAM晶体管的尺寸就需要缩小到小于逻辑晶体管。而晶体管尺寸的缩小会导致漏电流增大,最终导致待机功耗增大。
有两种途径可以解决这个问题。一种方法是为处理器中或片上系统中的SRAM面积和逻辑面积采用不同的工艺技术节点。但这样做的后果则是处理器的大部分面积由SRAM构成。如果是这样,缩小处理器芯片的理由就无法成立。另一种方法则是把SRAM与处理器或控制器分开。有一些技术创新实际上正在加快这种替代方案的实现。
可穿戴电子产品中的SRAM
当今世界的微控制器(MCU)已经广泛应用于各种设备中。我们现今正在经历一个重大电子产品发展趋势,那就是可穿戴电子产品(图1)。对于智能手表和健康腕带这样的可穿戴产品来说,尺寸和功耗是关键因素。由于电路板尺寸受限,MCU必须精简小巧,并且能够借助便携式电池提供的微弱电力运行。
图1:可穿戴电子产品的要求正在推动SRAM的复兴
在上述要求下,片上高速缓存的容量相当有限。在将来的几代产品中,我们预计会看到可穿戴产品的功能将得到进一步丰富。这样一来,片上高速缓存的容量将不敷使用,从而带来对外部高速缓存的需求。在所有可用的存储器中,SRAM是用作外部高速缓存的最佳选择。因为它与DRAM相比待机电流消耗较低,而且其存取时间也比DRAM和闪存更短。
但是,要装配到微小的可穿戴产品电路板上,SRAM将需要进一步发展。对现有的并行SRAM而言,存在下列问题:
· 与MCU通信所需的引脚数过多;
· 尺寸过大,不适合PCB。
物联网和SRAM
过去几十年里,SRAM领域已衍生出两个不同的产品线:高速率和低功耗。每个产品线都有着各自特有的功能、应用和价格。需要使用SRAM的设备要么需要它的高速特性,要么需要它的低功耗特性,但从来不是两者兼具。然而,对采用便携式电源供电并用以执行复杂 *** 作的高性能低功耗设备的需求正在不断增长。这种需求背后的动力来自新一代医疗设备、手持设备、消费类电子产品、通信系统以及工业控制器,这些设备均受物联网(IoT)驱动。
IoT正朝着两个不同的方向发展:智能可穿戴产品和自动化技术。正如前文我们所讨论的,可穿戴产品使用低功耗的小尺寸SRAM最为适合。同时,物联网的发展还会影响到工业、商业和大规模运营以及个人住宅、大型工厂乃至整个城市的自动化。SRAM采用小型封装,能够在降低功耗的同时保持高速性能,其将为IoT应用带来重要价值。
许多主要厂商提供的微控制器通过诸如深度低功耗(Deep Power-Down)和深度休眠(Deep-Sleep)等特殊的低功耗模式,已经能够满足对此类跨界设备的不断变化的需求。在这些模式下,外设和存储器模块也有望节省功耗。因此,要成为IoT设计的优先选择,SRAM的发展必须能够让客户不必在性能和功耗之间权衡取舍。
SRAM的发展如此之快,很明显只要独立式SRAM制造商能够通过创新让自己的产品满足新一代应用需求,激动人心的时刻就在未来等待着他们。SRAM的主要创新领域包括:
缩小芯片尺寸:这要求工艺技术的进步和封装技术的创新;
减少引脚数量:目前大多数SRAM使用并行接口。市场上的串行SRAM只有低容量产品。需要生产容量更高的串行SRAM;
功耗更低的高性能芯片;
片上软错误校正。
在下面的章节中,我们将介绍SRAM设计的一些关键创新,这些设计创新促使嵌入式系统开发人员考虑把SRAM用于嵌入式可穿戴产品、IoT和其它嵌入式系统应用。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)