可编程DSP实现802.16 PHY信号处理

可编程DSP实现802.16 PHY信号处理,第1张

 

  IEEE802.16标准的各个版本都规定了PHY(物理层)的多种选项,包括调制、信道编码和天线分集技术。物理信道带宽可以在1.25 MHz~20 MHz之间变化。上述所有选项都会影响基站的性能和信号处理复杂度。

  许多客户希望提供一种可以从802.16-2004升级到802.16e标准的方法。上述需求以及对支持互通性(成功部署新标准的关键)的需求,都要求基站的PHY采用可编程的信号处理器件。

  

可编程DSP实现802.16 PHY信号处理,第2张

 

  图1为802.16基站基带信号链路基本框图。

  因为802.16-2004和802.16e标准都是在OFDM基础上建立的,所以FFTIFFT起了很大的作用。这两种变换都用于频域副载波(携带编码的数据位)和时域采样(在物理通道上传送)之间的转换。一次IFFT的输出被称为一个OFDM符号。按照这种方式进行通信,OFDM系统可以实现抗多径干扰,各副载波之间几乎或者完全无干扰,并且具有相当低的复杂度。

  与FFT密切相关的是信道均衡,它包括大量的MAC运算,还包括客户专用的复杂算法,以便恰当地估计信道和表征结果,尤其是在具有移动性的系统。

  同步模块在测距期间起作用,基站通过此模块获得新用户的信号,并且调整现有用户的定时(通过反馈来调整)。同步通常是通过计算接收信号与已知前同步信号的相关性,或自动计算接收信号与其自身延迟信号的相关性实现的,利用该信号确定的周期性属性,然后将得到的相关性结果通过一个检测器,以便确定是否有信号送到,如果有,确定其精确定时。

  同步 *** 作既需要MAC运算,也要求具有较高的灵活性。 例如,处理一个20 MHz的信道时,在10?s的窗口中计算一段有64个采样数据的相关性则需要14,000次复数MAC运算,大约比256点FFT运算提高了一个数量级。但是,上述MAC的精度通常可以简化为用8 bit实数和复数乘以1 bit的实数和复数。这种简化的MAC可以在TIgerSHARC处理器中实现,也可以在FPGA中实现。另一方面,检测器可能包含比较智能的用户专用算法,也可能需要C语言程序。

  802.16标准支持高数据速率(70 Mbps左右),有多种信道编码选项。必备方案是卷积码(在802.16-2004标准中,还要结合里德-所罗门(RS)码),卷积turbo码、turbo乘积码,以及802.16e标准中的低密度奇偶校验码都是可选的。

  信道解码的高数据速率超出了传统DSP体系结构的能力。可能的实现方法有专用指令、硬件加速和可编程逻辑器件。除了本身计算的高复杂度,基站体系结构必须具有相当大的数据带宽和存储器,以便支持更先进的解码方案。

  人们期望基于802.16e标准的系统实现多天线处理,它增加了两级的复杂度。首先,信号链中的几个模块,特别是FFT和IFFT,必须为每个天线流都复制一份。其次,系统必须为不同的天线流计算出并选取适当的权重,以满足诸如最大信号干扰比的要求。

  在802.16e系统中,允许在同一个OFDM符号中复用多个子信道(因此称为OFDMA),从而增加了对可编程性的需求。虽然802.16-2004系统通常不需要每次处理一个OFDM符号,但是802.16e增加了子信道、副载波和OFDM符号之间的复杂映射,包含了几种可能的排列。这就增加了更多的总控制码和存储器访问,并且提高了调度处理任务的复杂度。另外,应该有一种体系结构支持升级以便增加功能,例如混合ARQ(自动重传请求)和MIMO(多输入多输出天线处理)。

  考虑到上述需求和当前的处理器发展情况,适合802.16基站PHY的合理解决方案是采用双重方法。对于基本的系统,完全采用DSP解决方案可以提供必需的计算资源,同时提供方便的编程模式。对于具有更宽的信道带宽或较多天线数量的高级系统,应当采用DSP和FPGA的组合方案。采用这种方法,PHY可以保持类似的编程模式,同时将一小部分计算量大的功能分配给FPGA,例如信道编码。这两种体系结构都具有增加功能、升级软件以及移植到新版本标准的灵活性。

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/2448183.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2022-08-03
下一篇 2022-08-03

发表评论

登录后才能评论

评论列表(0条)

保存