随着对更多输入/输出(I/O)要求的提高,传统线绑定封装将不能有效支持上千的I/O。倒装芯片装配技术被广泛用于代替线绑定技术,因为它不仅能减小芯片面积,而且支持多得多的I/O。倒装芯片还能极大地减小电感,从而支持高速信号,并拥有更好的热传导性能。倒装芯片球栅阵列(FCBGA)也被越来越多地用于高I/O数量的芯片。
图1:倒装芯片横截面:信号线经过包括重新布线层在内的三个面。
重新布线层(RDL)是倒装芯片组件中芯片与封装之间的接口界面(图1)。重新布线层是一个额外的金属层,由核心金属顶部走线组成,用于将裸片的I/O焊盘向外绑定到诸如凸点焊盘等其它位置。凸点通常以栅格图案布置,每个凸点都浇铸有两个焊盘(一个在顶部,一个在底部),它们分别连接重新布线层和封装基板。因此重新布线层被用作连接I/O焊盘和凸点焊盘的层。
图2:自由分配(FA)和预分配(PA)是两种焊盘分配方法。外围I/O(PI/O)和区域I/O(AI/O)是两种倒装芯片结构。
倒装芯片结构与焊盘分配
以往研究已经明确了两种倒装芯片结构和两种焊盘分配方法,如图2所示。自由分配(FA)和预分配(PA)是两种焊盘分配方法,而外围I/O(PI/O)和区域I/O(AI/O)是两种倒装芯片结构。
两种焊盘分配方法的区别在于凸点焊盘和I/O焊盘之间的映射是否定义为输入。自由分配的问题是,每个I/O焊盘都可以自由分配到任意凸点焊盘,因此分配与布线需要一起考虑。而对预分配来说,每个I/O焊盘必须连接指定的凸点焊盘,因此需要解决复杂的交叉连接问题。预分配问题的解决比自动分配要难,但对设计师来说则更加方便。
两种倒装芯片结构分别代表不同的I/O布局图案。AI/O和PI/O的挑战分别在于将I/O放在中心区域和将I/O放在裸片外围。目前PI/O更加流行,因为它简单,设计成本低,虽然AI/O理论上可以提供更好的性能。
图3给出了一个PI/O例子。外围一圈绿色矩形代表I/O焊盘。红色和黄色圆圈代表电源和地凸点,而蓝色圆圈代表信号凸点。位于裸片中央的那些电源/地凸点被分类为网状类型,信号凸点被分类为栅格类型。
图3:重新布线层顶视图,图中显示了栅格图案的凸点焊盘和外围的I/O焊盘。
上述所有工作都集中在单层布线。它们将布线限制在一个金属层,每个网络都必须在这个层完成布线。一般的目标是尽可能地减少走线长度。优化算法需要在布通率为100%的前提下完成。这种方法被证明可以很好地解决每种重新布线层的布线问题,前提是存在单层解决方案。
实用的重新布线层布线方案
重新布线层布线和凸点分配都是额外的实现任务,它们有助于设计从线绑定过渡到倒装芯片。凸点分配的意思是将每个凸点分配到指定的I/O焊盘。由于对大多数设计来说I/O焊盘位于裸片外围,因此飞线和信号走线看起来像是从芯片中心到四周边界的网状图案。
图3显示的是一个使用两层重新布线层的真实比例设计例子。金属层10(M10)和金属层9(M9)完成所有信号网络布线,并分别实现电源/地(PG)网格和电源布线。通常有数量众多的信号网络需要布线。凸点焊盘的占用面积比较大,在布线阶段常被认为是影响布线的障碍。
图4:拥挤的重新布线层的布线解决方案。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)