关于ADA4807的频率响应

关于ADA4807的频率响应,第1张

在物联网时代,电池供电应用日益兴盛。本文将说明我们并非一定要在节省功耗和精度之间进行取舍。有些运算放大器有禁用引脚,如果使用得当,可以节省高达 99%的功耗,同时不影响精度。禁用引脚主要用于静态工作(待机模式)。在这种模式下,所有IC都切换到低功耗状态,不需要使用器件来处理信号。这使功耗降低了若干个数量级。

如果运算放大器需要用作 ADC 的缓冲放大器,如图 1 所示,它必须处于工作状态才能执行其功能。但是,如果通过禁用引脚将放大器切换到关断模式,仍然可以保持低功耗。通常,只要 ADC 不需要向其采样和保持功能块读入任何新数值,就可以使用关断模式。

关于ADA4807的频率响应,关于ADA4807的频率响应,第2张

图1. 具有ADC驱动器和基准电压缓冲器的ADC输入级的典型原理图。

实现这个功能最简单的方法是通过转换开始命令。在标准 ADC中,首先将输入(采样保持)电容充电到要测量的值。这部分在信号发送至 ADC 进行转换之前完成。然后将输入电容隔离并连接到转换器级的输入端,即转换开始。随后转换完成,并设置已完成信号,具体取决于转换器类型。现在真正的问题来了:运算放大器何时必须处于工作状态?放大器必须比转换开始信号提前工作足够长的时间,才能确保内部输入电容取得与待测信号相同的值。时间长短取决于输入电容的大小、待测电压的大小以及运算放大器驱动容性负载的速率等因素。

ADC (AD7980) 的数据手册给出串联 400 阻抗时,输入电容值为 30pF。 但是,运算放大器可不是那么简单。参数表中列出容性负载为 15pF,但也有可能更高,参见相应的曲线图(图2)。同时需要考虑 2.7nF 和 20 时使用低通滤波器的情况。

关于ADA4807的频率响应,关于ADA4807的频率响应,第3张

图2. ADA4807的频率响应。

此曲线图表明模块可以驱动足够高的容性负载。禁用后,放大器需要大约 500ns 以达到满量程输出电平,本例中最大值为5V或4.096V。

为了安全起见,我们假设放大器在转换开始前 750ns 开启。将 1kSPS 至 1MSPS 的预估数据进行比较。

1kSPS 时,可能节省功耗 99.83%(总功耗0.02mW),1MSPS时节省 92.41%(总功耗10.75mW)。这只是 ADC 驱动器节省的功耗;基准电压缓冲器也可以节省功耗。

本例旨在说明现代器件具备的能力。在最短采样时间为 500ns 时,SINAD偏差小于 0.5dB。对于驱动器,还需关注速度更快的相关器件并灵活地使用它们。我们只考虑了用作缓冲器的应用(增益=1)。对于反相或其他放大器,功耗节省也会随具体情况有所不同。需要通过测量来进一步分析。

AD7980

16位分辨率、无失码

呑吐速率:1 MSPS

低功耗

4 mW(1 MSPS,仅VDD)

7 mW(1 MSPS,总功耗)

70 μW (10 kSPS)

INL:典型值±0.6 LSB,最大值±1.25 LSB

信纳比(SINAD):91.25 dB(10 kHz时)

THD:-110 dB(10 kHz时)
       责任编辑:pj

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/2468619.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2022-08-04
下一篇 2022-08-04

发表评论

登录后才能评论

评论列表(0条)

保存