DSP控制的电力线通信模拟前端接口设计

DSP控制的电力线通信模拟前端接口设计,第1张

摘要 DSP(Digital Signal Processor)为各种电子系统提供了许多片内外设以及计算能力,设计人员可以实现许多功能,例如电力载波通信、功率因数校正、变频控制等。笔者设计了一个遵从CEA709协议的、DSP控制的电力线通信模拟前端接口

关键词  电力线通信  DSP  CEA709协议  模拟前端

引言

  随着电子技术和网络技术的发展,运用电力线作为载体进行信号传输受到人们越来越多的重视,得到了越来越广泛的应用。电力线是当今最普通、覆盖面最广的一种物理媒介,由其构成的电力网是一个近乎天然的物理网络。如何利用电力网的资源潜力,在不影响传输电能的前提下,将电力输送网和通信网合二为一,使之成为继电信、电话、无线通信、卫星通信之后的又一通信网,是多年来国内外科技人员技术攻关的一个热点。电力线载波通信就是在这种背景下产生的,它以电力网作为信道,实现数据传递和信息交换。电力线作为载波信号的传输媒介,是唯一不需要线路投资的有线通信方式。

  作为通信技术的一个新兴应用领域,电力载波通信技术以其诱人的前景及潜在的巨大市场而为世界关注。我国从上世纪50年代开始从事电力线载波通信技术的研究。90年代以后,电力线载波技术的需求随着我国经济的发展进一步扩大。目前,该技术开始应用于家居自动化、远程抄表、宽带上网等领域。专家介绍,在一些干扰大、布线困难的工业领域若要实现自动化控制,采用电力载波通信方式能达到事半功倍的效果,因此,电力网又被喻为“未被挖掘的金山”。

  实现电力线载波通信的方法有很多,通常利用一个专用通信芯片实现系统的调制解调部分,而系统的应用部分则使用另一个控制器来完成,这种双片法是一种不错的选择。随着数字信号处理技术的发展,可以合二为一,一个高级的DSP控制器可以实现电力线调制解调器的功能。DSP控制器可以在软件上实现调制解调器功能,用片上外设在电力线上通过模拟终端接口,来实现接收和发送。

  本文叙述的是一个遵从CEA709[1]协议,使用定点DSP控制器(TMS320LF2812),从软件和硬件上来实现电力线调制解调器的系统。文中描述了模拟终端具体的设计方法,而这个终端对稳定的收发运行过程来说是必要的。

1  基于CEA709协议的系统框架

  图1为ANSI/CEA709协议标准的物理框图。该协议的详细说明可见参考文献[1]。

DSP控制的电力线通信模拟前端接口设计,第2张
图1  CEA709协议物理层框图

  在轨道交通、网络能源管理、智能楼宇、暖通空调、煤矿安全、能源和环境管理等领域应用广泛的控制网络平台LonWorks成为中国国家标准指导性技术文件。全球的楼宇、家庭、工业和运输自动化业目前大量采用了基于LonWorks平台。LonWorks平台是世界上最大住宅智能电表网络的核心技术平台,被瑞典、荷兰和澳大利亚等国家的住宅和小型商业电表的智能表所采用,而运行在此平台上的协议是美国控制网络标准ANSI/CEA709。目前,已有越来越多的中国生产厂和集成商采用了ANSI/CEA709协议标准,例如在青藏铁路——世界上最长的高海拔铁路列车上,利用LonWorks技术平台,采用ANSI/CEA709协议用于技术监测和控制各种系统,包括监测最先进的旅客用供氧系统。

  对于图1中的CEA709物理层框图,用DSP来实现CEA709调制解调器功能的系统框图如图2所示。DSP(TMS320F2812)具有150 MIPS的计算能力,信号采集使用一个12位片上模/数转换器,其转换速度为12 Msps,DSP提供多PWM来适应电力线调制解调器。

DSP控制的电力线通信模拟前端接口设计,第3张
图2  系统框图

  2个片上PWM输出和1个线驱动器用于实现调制解调器的发送功能。一个A/D输入用来采样带通输入端口信号,以此来实现调制解调器的接收功能,带通滤波器实际上是一个离散滤波器。它们和交流阻塞电容耦合变压器一起完成接口的模拟前端设计。

  下面主要介绍模拟前端接口的设计过程。

2  模拟前端及接口的实现

  CEA709通信系统以131.579 kHz载波频率来定义,每个传输数据位由载波频率正弦波上24个周期组成,因此波特率为5.5 kbps。每个位段的相位可以设为0°而使该位置0,也可以设为180°来使该位置1。

2.1  信号接收

  首先去除耦合网络中的50/60 Hz电力线电压,然后再用一个二阶有源带通滤波器滤出信号,可以检测到131.5 kHz的调频信号。这个滤波器是通过一个运算放大器来建立的。带通滤波器的输出由DSP的模/数转换器的一个通道采样,信号采样序列由FIR滤波器处理,同时,这个滤波器的输出用来进行时钟恢复和数据检测。

  采样得到的是115 kHz的接收信号,它是载波频率的(21/24)倍。这个信号在131.5 kHz至中频16.5 kHz的范围内向下采样,然后用采样频率时钟与输入载波正弦信号混合相乘,两个正弦波相乘的结果生成两个正弦波频率的“和”与“差”的合成信号,如图3所示。

DSP控制的电力线通信模拟前端接口设计,第4张
图3  采样后的频率效应

  运行时,DSP在每个ADC采样转换完成后都会产生一个中断,然后每个采样信号就和数字PLL(PhaseLocked Loop锁相环)输出比较,来估计接收到的信号的相位。在频率5.5 kHz下,相位是确定的。如果相位小于±90°,那么就假定接收到的是“0”信号,否则就是“1”信号。

  接收的位序列和已知的“位同步”域进行比较,当位同步数据接收到之后,调制解调器就开始搜寻“字同步”域。字同步数据标志着消息数据的起始,同时也定义了消息数据的极性。当包的数据确定后, 11位码字解码为8位的数据字节,接收字节的校验位和通过计算得到的校验位进行比较,数据从物理层传送到MAC层。然后接收数据进行CRC校验比较,正确数据从数据链路层传输到网络层。

2.2  相位检测

  为了检测发送信号的“0”或“1”, 中频信号16.5 kHz的相位是离散的接收信号值的形式。首先需要用接收的采样信号驱动一个数字锁相环,当这个锁相环的输出被接收的信号同步地锁住后,锁相环和接收信号之间的复数相位的估算是由锁相环调制产生的。复数相位的实部是余弦和,当接收到“0”信号时,它是一个很大的正数值;相反接收到“1”时,它就是一个大的负数。复数相位的虚部是正弦和。它代表了相位有偏差,并反馈给锁相环来调整正弦输出,以跟踪接收的信号。

DSP控制的电力线通信模拟前端接口设计,第5张
图4  接收信号处理框图

  图4为完整的接收信号的处理框图。为了提高系统的稳定性,加上了一个自动增益控制模块(AutomaTIc Gain Control,AGC)。它是通过侦测接收信号的平均大小来接收信号的。

2.3  信号发送

  在该应用中,发送信号通过DSP控制器的片上PWM(脉宽调制模块)直接生成。每一位定义有24个周期,因此PWM控制器允许运行24个周期;而后,根据下一个发送位的极性,通过一个中断来重新给PWM输出赋值。欲发送的消息数据从应用层依次输送到会话层、传输层、网络层、数据链路层,然后到达物理层,形成发送波形。在数据链路层时,消息数据的CRC字经计算后附加给数据,物理层确定信道是否可用,然后把数据发送出去。

2.4  PWM生成发送波形

  三级信号波形是通过把DSP控制器的两个PWM输出相加得到的,然后该波形由低通滤波器产生一个正弦波。与标准的二级方波相比,三级波形的奇次谐波能量要小很多,不同的脉冲宽度会产生不同的谐波频率。为了将滤波器需要清除的谐波减到最小,需要确定最佳的脉冲宽度。从下式对称脉冲的傅里叶级数公式,可以找到这个宽度。式(1)中T代表基波频率周期,ω代表脉冲宽度。

DSP控制的电力线通信模拟前端接口设计,第6张

  那么,总的谐波失真THD可用下式表达:

DSP控制的电力线通信模拟前端接口设计,第7张

DSP控制的电力线通信模拟前端接口设计,第8张
图5  三级波形结构

  对式(2)求最小的总谐波失真,则最佳脉宽大约是周期T的37%;然而,这还没有考虑到低通滤波产生的影响。如果用二阶低通滤波器,将会得到不同的结果。在模拟时,二阶低通滤波器的Q设置为2.3。如果Q很大,THD会更好,但是会造成码间干扰,因此,最好是把正负数字脉宽设为脉冲周期的1/3长,将低通滤波器角频率和数字脉冲序列的频率设为相同。1/3脉宽可以通过使用12倍于发送波形频率的定时时钟信号来获得,如图5所示。通过使用1个模拟电路,将2个数字信号相加,而后低通滤波器滤掉谐波,就可以从PWM输出获得正弦波。

DSP控制的电力线通信模拟前端接口设计,第9张
图6  发送低通滤波放大器

2.5  发送放大器设计

  发送放大器由SallenKey滤波器决定,发送低通滤波放大器如图6所示。这个电路的传输函数如下:

DSP控制的电力线通信模拟前端接口设计,第10张

  这里,R1=kR,R2=R,C1=C,C2=aC。假设放大器增益为2,则vout可以表示如下:

DSP控制的电力线通信模拟前端接口设计,第11张

  Q最大时滤波器的峰值最大,而当商数k/(1+k)为1时Q最大。

  因此图6中SallenKey滤波器中的电阻R1和R2一般相等,Q根据电容的比值来确定。发送放大器有2个输入端,2个输入信号是从处理器的PWM输出端中的信号过滤而来。放大器发送频率的峰值越大,谐波频率中的相对衰减也越大,因此,希望电阻R1、R2、R3的并联组合与R4电阻相等,以此来获得一个较大的Q值。

  若定义R4=R,则:

DSP控制的电力线通信模拟前端接口设计,第12张

  此外,定义衰减因素k为:

DSP控制的电力线通信模拟前端接口设计,第13张

  然后,能根据R和k来定义电阻值:

DSP控制的电力线通信模拟前端接口设计,第14张

  定义电容为C1=C,C2=aC,根据A、k、a、R和C,发送放大器的传输函数如下:

DSP控制的电力线通信模拟前端接口设计,第15张

  其中:

DSP控制的电力线通信模拟前端接口设计,第16张

  给定Q,电容比率为:

DSP控制的电力线通信模拟前端接口设计,第17张

  若放大器增益A=2,且取a的较小解,则

DSP控制的电力线通信模拟前端接口设计,第18张

  最后,s=0,传输函数增益为:

DSP控制的电力线通信模拟前端接口设计,第19张

  这样,就求得了所有定义发送放大器部件的参数,通过以上的参数可以设计调制解调器模拟终端。

3  结论

  本文只对电力线调制解调器的硬件设计过程进行了描述,软件设计主要是根据CEA709协议的要求通过DSP来完成的。在设计和实现中还有许多关键技术问题需解决,因篇幅所限未作详细说明。这个基于单一定点DSP控制的调制解调器硬件系统在各种电力条件下进行检测,其功能较稳定和可靠,正应用于智能家居的系统中。

参考文献

[1]  ANSI/EIA/CEA709.1B2000 Control Network Protocol SpecificaTIon[OL]. [20070512].  http://www.lonmark.org/products/guides.htm#lontalk.
[2]  Warren Webb. Thinking inside the box: Buildings get a brain[J]. EDN,2005(7):49-57.
[3]  Texas Instruments TMS320F2812 Data Manual[OL].[20070810].http://focus.TI.com/lit/ds/symlink/tms320f2812.pdf.
[4]  Digital Addressable LighTIng Interface Activity Group (DALI AG) of ZVEI, Division Luminaires Stresemannallee 19, D60596 Frankfurt am Main, Germany[OL].[20071020].  http://www.daliag.org.
[5]  MATLAB is a product of The MathWorks[OL]. [20071020].  http://www.mathworks.com.
[6]  宦若虹,金向东. 基于OFDM的电力线通信系统的Matlab仿真[J]. 现代电子技术,2006,29(1):129-131.
[7]  Zimmermann M,Dostert K. A Multipath Model for the Power Line Channel[J]. IEEE Trans.Commun.2002,50(4):553-559.
[8]  Zimmermann M,Dostert K.Analysis and Modeling of Impulsive Noise in Broadband Power Line Communications[J]. IEEE Trans. Electromagnetic Compatibility,2002,44(1):249-258.

陈建明(博士、副教授),主要研究方向为信号与信息处理。

(收修改稿日期:2008-01-23)

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/2471098.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2022-08-04
下一篇 2022-08-04

发表评论

登录后才能评论

评论列表(0条)

保存