彩色电视信号
(一)电视信号频谱特性
电视系统是通过行、场扫描来完成图像的分解与合成的,尽管图像内容是随机的,但电视信号仍具有行、场或帧的准周期特性。通过对静止图像电视信号进行频谱分析可知:它是由行频、场频的基波及其各次谐波组成的,其能量以帧频为间隔对称地分布在行频各次谐波的两侧。而对活动图像的电视信号,其频谱分布为以行频及其各次谐波为中心的一簇簇连续的梳状谱,如图07-03-3所示。
图07-03-3 活动图像电视信号频谱
对于实际的电视信号,谐波的次数越高,其相对于基波振幅的衰减越大。在整个电视信号的频带中,没有能量的区域远大于有能量的区域。根据这一性质,彩色电视系统利用频谱交错原理将亮度信号和色差信号进行半行频或1/4行频间置,完成彩色电视中亮度信号和色度信号的同频带传输。我国采用的PAL-D制彩色电视信号,亮度信号带宽为6MHz;在美、日等国采用的NTSC制电视系统中亮度信号带宽为4.2MHz。由于人眼对于色度信号的分辨率远低于对亮度信号的分辨率,因此在彩色电视系统中色度信号的带宽一般均低于1.3MHz,且调制在彩色副载频上置于亮度信号频谱的高端,以减少亮色信号之间的串扰。
视频图像信号的能量主要分布在行扫描频率fh及其各次谐波nfh上,见图07-03-4。而在两相邻频率之间能量则很微弱,以至于可以将其看成是空白的。由于U和V色差信号是R、G、B的线性组合,因此频谱遵循同样的规律。根据视频信号的频谱特点。若选择数值为半行频奇数倍的副载频fsc,即使fsc = ( 2 n + 1 ) fh / 2,用fsc来将两个色差信号进行频谱搬移,然后再与亮度信号Y叠加在起,色度信号的能量则刚好落在亮度信号频谱的空白处,如图07-03-4,这就是亮度信号与色度信号按频谱交错间置的共频带传送基本原理。
图07-03-4 亮度信号与色度信号的频谱交错原理
选择fsc时的另一个需要考虑的问题是,在色度信号不超出Y信号的上限频率的前提下,将fsc的数值尽量选高,如图07-03-5所示。因为fsc越高,它对Y信号的干扰光点越细,能见度越低。另外,还要考虑到接收机中可能出现的副载频与伴音载频fs之间的差拍干扰。为此要求fsc与fs之间的差拍频率(fsc-fs)也等于半行频的奇数倍,以降低干扰点的能见度。
图07-03-5 共频带的亮度信号和色度信号频谱
由于副载频只有一个即fsc,而作为调制信号的色差信号则有两个U和V,因此,需对同载频的两个不同相位进行两相调制。在NTSC和PAL制中是将色差信号U和V调制在载频fsc的两个正交相位上,因此叫正交调制。
亮、色信号同频带传送所带来的最大问题是二者之间的干扰,为了降低这种干扰,需最大限度地抑制已调色差信号中不携带信息的功率,因此彩色电视中采用平衡调制的方法,将已调波中的载频分量抑制掉,抑制掉载频后的色差信号的平衡调幅波可表示为:
在频率域内Y、U、V三个信号是交错间置的,而在时间域内Y、U、V是叠加在一起的,再加上各种复原图像所需的同步信号最终形成的信号我们称其为全彩色电视信号,它们的带宽就是原黑白电视所占用的带宽。
(二)复合电视信号
包含亮度信号、色差信号和所有定时信号的单一信号叫做复合电视信号(composite video signal),或者称为全电视信号。图07-03-6表示的是黑白全电视信号,而色差信号是通过彩色副载波调制之后和亮度信号混合得到,如图图07-03-7所示。
图07-03-6 一个行周期的黑白全电视信号
图07-03-7 彩色电视系统的水平消隐间隔
(三)分量电视信号
分量电视信号(component video signal)是指每个基色分量作为独立的电视信号。每个基色既可以用RGB表示,也可以用亮度-色差表示,如YIQ,YUV。使用分量电视信号是表示颜色的最好方法,但需要比较宽的带宽和同步信号。
(四)S-Video信号
分离电视信号S-Video(Separated video-VHS)是亮度和色差分离的一种电视信号,是分量模拟电视信号和复合模拟电视信号的一种折中方案。使用S-Video有两个优点:
① 减少亮度信号和色差信号之间的交叉干扰。
② 不须要使用梳状滤波器来分离亮度信号和色差信号,这样可提高亮度信号的带宽。
复合电视信号是把亮度信号和色差信号复合在一起,使用一条信号电缆线传输。而S-Video信号则使用单独的两条信号电缆线,一条用于亮度信号,另一条用于色差信号,这两个信号称为Y/C信号。S-Video使用4针连接器,如图07-03-8所示。具体的规格如表07-03-3所示。
图07-03-8 S-Video连接器
表07-03-3 S-Video工业标准4针连接器规格
插座号
信号
信号电平
阻抗
1
地(亮度)
-
-
2
地(色度)
-
-
3
亮度(包含同步信号)
1V
75 ohms
4
色度
0.3V
75 ohms
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)