基于ARM+FPGA的大屏幕显示器控制系统设计

基于ARM+FPGA的大屏幕显示器控制系统设计,第1张

  0 前言

  随着计算机和半导体技术的发展,LED大屏幕显示系统成为集计算机控制、视频、光电子、微电子、通信、数字图像处理技术为一体的显示设备。目前LED大屏幕显示器向更高亮度、更高耐气候性、更高的发光均匀性、更大屏幕化、更高的可靠性方向发展。LED显示屏产业正成为我国电子信息产业的重要组成部分。大屏幕显示技术的发展进步,需要处理的数据量大大增加,系统的频率越来越高,系统的规模越来越大,对显示控制系统的要求不断提高。以往的LED大屏幕显示系统用中小规模集成电路实现,系统体积较大、调试困难、不易修改。随着半导体技术的进一步发展及大规模集成电路的广泛应用,ARM具有体积小、功耗低、数据处理能力强等特性,PLD能够满足LED大屏幕系统高速图像数据传输对速度的要求且设计灵活。鉴于此,本设计采用ARM+RAM+FPGA方案,解决了系统的运行速度、寻址能力和功耗等问题,从而支持更大可视区域的稳定显示,存储更多的显示内容。

  1 系统组成及原理

  该系统主要由PC机、显示控制电路和LED显示屏3部分构成,如图1所示。

  基于ARM+FPGA的大屏幕显示器控制系统设计,大屏幕,第2张

  PC机在控制中作为上位机,用于后级下位机ARM的控制和管理。上位计算机主要用于人机交互,完成对显示控制电路的显示数据发送以及设置LED显示屏的显示效果。用户在上位机上通过控制软件将编辑好的文字图片信息和相应的控制命令通过串行通信传输至系统的控制电路部分,LED显示屏即可根据用户选择的方式循环显示用户编辑好的文字和图片,该系统还具有脱机显示的功能,用户将显示的内容传送至显示控制电路部分后,上位计算机就可以不再介入显示的过程,显示系统可以根据用户设定的模式显示所要显示的信息内容。数据转换信号控制部分采用ARM实现,LED显示屏的扫描驱动电路采用 FPGA来完成。上位机与下位机之间的通信采用标准的RS232/RS485计算机数据串行通信方式,它们相对独立,但相互间协调工作。显示屏以LED为像素,由LED点阵显示单元拼接而成的,本设计的显示屏为16行×256列,采用640×480点阵结构。

  2 系统硬件设计

  2.1显示控制电路

  显示控制电路系统的重要部分,主要由输入接口电路、数据转换及信号控制电路、扫描驱动电路组成,如图2所示。

  基于ARM+FPGA的大屏幕显示器控制系统设计,LED大屏幕,第3张

  当显示屏做得越大,即屏幕的点阵越多,向显示屏发送的数据就越多,数据传输与控制的时间也会增加,完成一屏扫描的时间会越长。因此,在设计中必须考虑这个因素。满足这一要求,关键在于提高程序的执行速度,可以选择更快的CPU或数字信号处理芯片ARM。本设计采用基于ARM的32位嵌入式 RISC为处理器,S3C4510B是完全可以胜任的,该微处理器的速度较高,而且存储容量较大。

  上位机通过串口经过RS232/RS485转换器将指令集发送给ARM微处理器,ARM微处理器把接收到的指令集放入外部的FLASH中保存,断电后内容不丢失,同时ARM外部扩展两片SRAM用于存放快速运算的数据,光传感器温度传感器用来测量外界的光和温度,以便随着光线的强弱改变显示屏的亮度,在显示屏上显示出外界温度。FPGA完成对LED屏的扫描驱动过程,其内部固化的数字逻辑负责产生屏幕显示控制信号(串行移位时钟、行锁存信号、行选信号等),其外部配置的两片SRAM用于分时读取灰度数据。同时,FPGA从 SRAM中读取灰度数据信号,并将其转换成上屏数据后串行输出到相应的颜色的信号数据总线上。FPGA外部扩展的两片SRAM组成了数据缓冲、切换区,采用乒乓逻辑,某一时刻向一片存储器写入数据,另一片被FPGA逻辑读取数据转换后送人显示屏,二者轮流切换,保证了数据的高速上屏和显示的连续性。ARM外部配置大容量的SRAM和FLASH存储器,与传统的显示屏控制电路相比较,可以支持更大的显示区域、存储更多的显示内容、获得更好的显示效果。

  2.2扫描驱动电路设计

  LED显示屏的扫描驱动电路部分是由FPGA来实现的,如图3所示。

  基于ARM+FPGA的大屏幕显示器控制系统设计,LED大屏幕,第4张

  扫描驱动电路主要完成灰度数据的读取和发送、上屏灰度数据的产生、移位时钟的产生、亮度信号的控制、4个分区锁存信号的产生、通知ARM发送数据等功能。这些功能均在一片FPGA中完成,这样使显示控制电路板的体积减小,而且由于FPGA功能用硬件描述语言VHDL编程实现,即可以通过使用VHDL语言编程,来验证系统方案的可行性及正确性,然后再用FPGA硬件来实现,从而可以大大缩短开发周期,使设计灵活、修改方便,同时FPGA由于高集成度、高速高可靠性、开发周期短的特点,从而大大改善电路性能。

  这种设计的实现需要FPGA提供大量的I/O引脚,其中I/O引脚包括(1)系统总线接口:数据总线8根,控制信号线5根,亮度信号线3根,输入线1根,复位信号线1根,共18根;(2)双体SRAM总线接口:地址总线15根,数据总线8根,读写控制信号2根,共50根;(3)显示控制信号输出接口:移位时钟信号1根,行锁存信号1根,行选4根;(4)显示像素数据输出接口:红、绿、蓝共3根。共计18+50+6+3=77个I/O口。为了可以使LED显示屏的尺寸增加1倍,即所需的I/O口增多,同时考用VHDL语言描述的内部功能逻辑所需的宏单元数量,需要选择256个宏单芯片,在此 FPGA选用32位的PolarPro QLlP300芯片。

  2.3静态存储器SRAM的选择

  外部扩展的两片SRAM,要求能满足上屏数据读取速度的要求,考虑到存储数据的宽度和容量,本设计选用ISSI(Integrated Silicon SoluTIon Inc.)公司的IS61C1024芯片。该芯片存储容量为128 kB,8位数据宽度,最高读写速度为25 ns,电源电压为5 V,具有最高40 MHz的读写频率,可进行高速异步读写 *** 作,无须等待时间,其容量满足一屏文字和图像数据信息的存储要求,两片SRAM采用双体切换技术来完成数据的存储和读取过程。

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/2476062.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2022-08-04
下一篇 2022-08-04

发表评论

登录后才能评论

评论列表(0条)

保存