基于PIC18F1320的信号采集系统设计

基于PIC18F1320的信号采集系统设计,第1张

 

  本文研究一种微控制器为基础的信号采集系统,以满足信号采集的低成本和灵活模式。开发系统的主要硬件包括一台微型计算机、一个以PIC18F1320为基础的微控制器电路板以及串行通讯链接设备。EEPROM 24LC32A被用来进行存储器扩展。微型计算机运行控制程序。一旦用户在微型计算机界面上决定采样输入,信息便通过RS-232端口送往微控制器。微型计算机和微控制器通过特定的协议通信。微型计算机告知微控制器模-数转换的采样间隔、采样次数与采样通道。电路板的设计考虑了开放式结构。该系统采用了24引脚易于插拔的插座来容纳Micro-chip微控制器。微处理器将调制的信号转换成数据直接输送到微型计算机或者存储于EEPROM以便将来读取。不同的命令与反馈代表系统的不同 *** 作。电路板通过串行电缆在采集完信号后连接到微型计算机交互,也可以即时连接和传送。

  1 系统硬件设计

  系统的主要原理图如图1所示。其中PIC18F1320控制器采用5 V电源供电,支持在线串行编程,最高时钟频率达到40 MHz,通讯波特率可以自动检测。端口A是双向输入/输出复用管脚,ANO等管脚被定义成模拟输入,由用户进行采样通道的选择。总共有13个模/数转换通道且采样时间可以编程。通道输入的被测信号经过电子电路调制成符合微控制器电气要求的信号。调制信号经过转换变成寄存器内的数据,模数转换的参考电压为+5 V。电路板可在微控制器重新编程后方便地插入;同时,电路板可通过跳线设置与终端用户进行电缆连接。由于微控制器与串行电路的电气特性不同,工业标准级的MAX232芯片被使用以保证正确的数据传输(见图2)。该芯片和PIC18F1320一样适用于低功耗场合。MAX232上连接的电容采用的是电解电容,电容值为1 μF。MAX232的11脚或者10脚接微控制器的USART输出端,12脚或者9脚接微控制器的USART输入端。微控制器的存储器扩展使用了32 k的I2C串行EEPROM(见图3),数据可以保持200年。EEPROM的地址线A0、A1、A2被接地。串行数据线SDA和串行时钟线SCL被分别连接到微控制器的B端口相应管脚。写保护WP接+5 V。

  

基于PIC18F1320的信号采集系统设计,a.JPG,第2张

 

  

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/2498038.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2022-08-05
下一篇 2022-08-05

发表评论

登录后才能评论

评论列表(0条)

保存