电子发烧友网核心提示:通常,人们对微型计算机的工作原理及硬件结构的了解来源于书本知识,深入理解掌握其功能特点比较困难,要自己亲手去做一个类似功能的微型计算机更是不可能。随着可编程逻辑器件的广泛应用,为数字系统的设计带来了极大的灵活性,用户可以利用FPGA(现场可编程门阵列)来开发出一个精简指令的CPU,同时对微型计算机的原理及结构进行充分研究,便于将来进行相关ASIC(专用集成电路)设计,也可用于计算机原理教学之中。
1 微型计算机结构及原理
以一个简化的微型计算机为例,微型计算机的简化结构。
1.1 微型计算机结构
微型计算机由PC(程序计数器)、IR(指令寄存器)、CON(控制部件)、MAR(存储地址寄存器)、ROM(只读存储器)、A(累加器)、ALU(算术逻辑部件)、B(寄存器)、OUTREG(输出寄存器)、DLEDDIS(数码管动态扫描模块)及DECL7S(显示模块)等组成。这里仅介绍有所改变或不同的模块,其余可见文献。
L为数据载入控制信号,E为三态输出选通信号,clk为时钟信号,clr为清零信号,Cp为控制PC加1信号,S0-S3为控制ALU进行加减或逻辑运算的选择信号。所有的控制、时钟及清零信号由CON模块给出,而CON模块由外部时钟clkin及清零信号rst控制。PC可以置数,即可执行跳转指令。OUTREG可清零,便于多次调试。DLEDDIS及DECL7S用来把地址及结果在数码管上显示出来。
1.2 微型计算机原理
虽然这台微型机可以实现16条指令,但本文对指令不做扩展,仅以5条指令为例。LDA为将数据装入累加器A( *** 作码0000);ADD为进行加法运算( *** 作码0001);SUB为进行减法运算( *** 作码0010);OUT为输出结果( *** 作码1110);HLT为停机( *** 作码1111)。
在程序和数据装入后,当外部给出时钟信号及清零信号无效时,由CON模块发出信号及控制字,开始取出和执行每条指令。如控制字顺序为ErLrS3S2S1SOEuLm LbEaLaEi LiCpEpLp,这里Lr可用于存储器为RAM时做写使能信号。由于采用的是数据总线与地址总线合一的总线结构,一条指令的执行需要6个机器节拍,即前3节拍取指周期与后3节拍执行周期。如执行ADD 0AH,机器码为1AH(0001 1001)。第1节拍将PC内容送入MAR,控制字为“0000 0001 00000010”,即Ep与Lm为1;第2节拍将ROM中对应地址单元中的内容送到IR,IR高4位送至CON,控制字为“1000 0000 0000 1000”,即Er与Li为1;第3节拍使PC加1,控制字中Cp为1,其余为0;第4节拍将IR的低4位送至MAR,Ei与Lm为1;第5节拍将ROM中的内容送入累加器A中,Er与La为1;第6节拍为加法运算,Eu与La为1,同时S0-s3选择为加法运算。
2 FPGA实现
2.1 总线方式
总线方式是指严格按图1用FPGA实现相应结构的微型机。本实验采用上海航虹公司的AEDK实验箱,FPGA芯片为Altera公司的EPF10K20TC144-4,软件采用QuartusII4.0、Max+plusII10.0及synplifypr07.5,程序设计采用VHDL语言。
共有11个子模块,最后用元件例化语句构成总模块。以设计程序计数器模块C-PC及控制模块C_CON为例简单做一介绍。
当三态输出信号es选通时,即es=“1”,PC可输出,否则输出为高阻态。数据或地址与总线相关的子模块都需采用三态门。由于采用了三态门,最好用QuartusⅡ软件来进行编译,Max+plusⅡ有时不一定可以通过。
用synplify pro7.5对C_PC模块进行RTL(寄存器传输级)原理图观察,如图2所示。其综合电路与一个4位二进制计数器类似,只是多了一个三态门。用synplify pro7.5不仅可以观察RTL电路,还可以观察门级电路结,深入了解其内部结构。
C_CON模块是最关键的模块,因为所有的控制信号都由它发出。由于指令执行需6个机器节拍,每个节拍对应相应功能,采用状态机是实现此高效率、高可靠逻辑控制的重要途径。如以下程序所示,每个状态对应着不同的控制字,共有6个状态。
只读存储器模块可使用LPM_ROM的LPM_FILE文件,便于调试不同的程序。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)