基于SoPC的边缘图像连通区域标记的算法

基于SoPC的边缘图像连通区域标记的算法,第1张

  本文所标记的图像是经过边缘检测得的二值边缘图像。相对于原始图像(或其二值图像),边缘图像保留了轮廓信息,目标点数大大减小,适合使用区域生长标记算法。但是,现有的区域生长标记算法一方面需要对每一个目标点进行N×N窗口搜索,搜索效率低并会出现同一像素重复扫描现象;另一方面,如果搜索窗口较小(如最常用的3×3,也称8邻域),虽然干扰少,但是同一个连通区很容易被标记成若干个不同的连通区;而如果增大搜索窗口(如7×7),虽然得到的标记图像连通性好,但是会引入较多干扰点。

  1 基于生长算法的区域标记

  像素P的上、下、左、右、左上、左下、右上、右下的像素集合为像素P的8邻域,邻域内所有目标点同属于一个连通区。通常采用8邻域生长法则进行连通区域标记。

  1.1 8邻域区域生长算法

  设边缘图像的背景像素为255,目标像素为0,对其进行8邻域区域生长标记的步骤如下:

  (1)按从上到下、从左到右的顺序扫描图像,遇到目标像素P时,标记为新的标记值L;

  (2)以P为种子点,将其8邻域内的目标像素标记为L;

  (3)将所有与L像素8邻域内相邻的目标像素标记为L,直到该连通区域标记完毕;

  (4)继续按顺序扫描图像,重复前三步,直到图像中所有目标像素都标记完毕。

  每个连通区域的起始点是按顺序扫描整个图像得到的,而各个连通区域的标记过程是递归调用生长函数的过程。生长函数依次扫描目标点的8邻域,若遇到新的目标点,则将当前目标点的处理过程压栈,转而扫描新目标点的8邻域,如此不断地将目标点压栈。当某一目标点的8邻域内没有新的目标点,则将其d栈,当所有目标点都d栈完毕,则该连通区域标记完毕。

  1.2 邻域重复扫描问题

  在图1中,P0的8邻域和P1、P2、P3、P4的8邻域有4个像素的重叠,与P5、P6、P7、P8的8邻域有2个像素的重叠。按上述的8邻域区域生长算法,当P0与P4均为目标点时(设递归过程由P0 向P4传递),P0、P1、P8、P3、P7这5个像素点被扫描了2次;当P0与P5均为目标点时(设递归过程由P0 向P5传递),P0、P1、P2这3个像素点被扫描了2次。

  1.3 8方向邻域生长算法

  8方向邻域生长算法的思路是:目标点A和目标点B相邻,从A到B有8个方向,当按某个方向从A传递到B的8邻域搜索时,只搜索B的8邻域中未被A的8邻域覆盖的部分。例如,图1中从P0传递到P4的8邻域搜索时,只搜索P18、P04、P37;从P0传递到P5的8邻域搜索时,只搜索P05、P25、P01、P15、P02。即:

  

基于SoPC的边缘图像连通区域标记的算法,第2张

 

  

基于SoPC的边缘图像连通区域标记的算法,第3张

 

  8方向邻域生长算法由9个生长函数组成。对于连通区域的起点,必须搜索8个方向,此时调用主生长函数。在目标点传递的过程中,按其传递方向,按式(1)调用相应的生长函数搜索邻域点。区域标记从起点调用主生长函数开始,过程是8个生长函数互相调用,最后这些函数都返回时,区域标记完毕。

  该方法充分利用了从目标点A到目标点B的方向信息,从而在搜索B的邻域时,搜索个数降低为原来的3/8或5/8,平均效率提高了50%。

  

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/2501155.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2022-08-05
下一篇 2022-08-05

发表评论

登录后才能评论

评论列表(0条)

保存