CNN是目前自然语言处理中和RNN并驾齐驱的两种最常见的深度学习模型。图1展示了在NLP任务中使用CNN模型的典型网络结构。一般而言,输入的字或者词用Word Embedding的方式表达,这样本来一维的文本信息输入就转换成了二维的输入结构,假设输入X包含m个字符,而每个字符的Word Embedding的长度为d,那么输入就是m*d的二维向量。
图1 自然语言处理中CNN模型典型网络结构
这里可以看出,因为NLP中的句子长度是不同的,所以CNN的输入矩阵大小是不确定的,这取决于m的大小是多少。卷积层本质上是个特征抽取层,可以设定超参数F来指定设立多少个特征抽取器(Filter),对于某个Filter来说,可以想象有一个k*d大小的移动窗口从输入矩阵的第一个字开始不断往后移动,其中k是Filter指定的窗口大小,d是Word Embedding长度。对于某个时刻的窗口,通过神经网络的非线性变换,将这个窗口内的输入值转换为某个特征值,随着窗口不断往后移动,这个Filter对应的特征值不断产生,形成这个Filter的特征向量。这就是卷积层抽取特征的过程。每个Filter都如此 *** 作,形成了不同的特征抽取器。Pooling 层则对Filter的特征进行降维 *** 作,形成最终的特征。一般在Pooling层之后连接全联接层神经网络,形成最后的分类过程。
可见,卷积和Pooling是CNN中最重要的两个步骤。下面我们重点介绍NLP中CNN模型常见的Pooling *** 作方法。
|CNN中的Max Pooling Over TIme *** 作MaxPooling Over TIme是NLP中CNN模型中最常见的一种下采样 *** 作。意思是对于某个Filter抽取到若干特征值,只取其中得分最大的那个值作为Pooling层保留值,其它特征值全部抛弃,值最大代表只保留这些特征中最强的,而抛弃其它弱的此类特征。
CNN中采用Max Pooling *** 作有几个好处:首先,这个 *** 作可以保证特征的位置与旋转不变性,因为不论这个强特征在哪个位置出现,都会不考虑其出现位置而能把它提出来。对于图像处理来说这种位置与旋转不变性是很好的特性,但是对于NLP来说,这个特性其实并不一定是好事,因为在很多NLP的应用场合,特征的出现位置信息是很重要的,比如主语出现位置一般在句子头,宾语一般出现在句子尾等等,这些位置信息其实有时候对于分类任务来说还是很重要的,但是Max Pooling 基本把这些信息抛掉了。
其次,MaxPooling能减少模型参数数量,有利于减少模型过拟合问题。因为经过Pooling *** 作后,往往把2D或者1D的数组转换为单一数值,这样对于后续的ConvoluTIon层或者全联接隐层来说无疑单个Filter的参数或者隐层神经元个数就减少了。
再者,对于NLP任务来说,Max Pooling有个额外的好处;在此处,可以把变长的输入X整理成固定长度的输入。因为CNN最后往往会接全联接层,而其神经元个数是需要事先定好的,如果输入是不定长的那么很难设计网络结构。前文说过,CNN模型的输入X长度是不确定的,而通过Pooling *** 作,每个Filter固定取1个值,那么有多少个Filter,Pooling层就有多少个神经元,这样就可以把全联接层神经元个数固定住(如图2所示),这个优点也是非常重要的。
图2. Pooling层神经元个数等于Filters个数
但是,CNN模型采取MaxPooling Over TIme也有一些值得注意的缺点:首先就如上所述,特征的位置信息在这一步骤完全丢失。在卷积层其实是保留了特征的位置信息的,但是通过取唯一的最大值,现在在Pooling层只知道这个最大值是多少,但是其出现位置信息并没有保留;另外一个明显的缺点是:有时候有些强特征会出现多次,比如我们常见的TF.IDF公式,TF就是指某个特征出现的次数,出现次数越多说明这个特征越强,但是因为Max Pooling只保留一个最大值,所以即使某个特征出现多次,现在也只能看到一次,就是说同一特征的强度信息丢失了。这是Max Pooling Over Time典型的两个缺点。
其实,我们常说“危机危机”,对这个词汇乐观的解读是“危险就是机遇”。同理,发现模型的缺点是个好事情,因为创新往往就是通过改进模型的缺点而引发出来的。那么怎么改进Pooling层的机制能够缓解上述问题呢?下面两个常见的改进Pooling机制就是干这个事情的。
|K-Max Pooling
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)