对多层感知器和反向传播进行入门级的介绍

对多层感知器和反向传播进行入门级的介绍,第1张

摘要: 本文对多层感知器和反向传播进行入门级的介绍。 人工神经网络是一种计算模型,启发自人类大脑处理信息的生物神经网络

人工神经网络是一种计算模型,启发自人类大脑处理信息的生物神经网络。人工神经网络在语音识别计算机视觉和文本处理领域取得了一系列突破,让机器学习研究和产业感到了兴奋。在本篇博文中,我们将试图理解一种称为「多层感知器(MulTI Layer Perceptron)」的特定的人工神经网络。
 

单个神经元

神经网络中计算的基本单元是神经元,一般称作「节点」(node)或者「单元」(unit)。节点从其他节点接收输入,或者从外部源接收输入,然后计算输出。每个输入都辅有「权重」(weight,即 w),权重取决于其他输入的相对重要性。节点将函数 f(定义如下)应用到加权后的输入总和,如图 1 所示:

对多层感知器和反向传播进行入门级的介绍,图 1:单个神经元,第2张

图 1:单个神经元

此网络接受 X1 和 X2 的数值输入,其权重分别为 w1 和 w2。另外,还有配有权重 b(称为「偏置(bias)」)的输入 1。我们之后会详细介绍「偏置」的作用。

神经元的输出 Y 如图 1 所示进行计算。函数 f 是非线性的,叫做激活函数。激活函数的作用是将非线性引入神经元的输出。因为大多数现实世界的数据都是非线性的,我们希望神经元能够学习非线性的函数表示,所以这种应用至关重要。

每个(非线性)激活函数都接收一个数字,并进行特定、固定的数学计算 [2]。在实践中,可能会碰到几种激活函数:

Sigmoid(S 型激活函数):输入一个实值,输出一个 0 至 1 间的值 σ(x) = 1 / (1 + exp(−x))

tanh(双曲正切函数):输入一个实值,输出一个 [-1,1] 间的值 tanh(x) = 2σ(2x) − 1

ReLU:ReLU 代表修正线性单元。输出一个实值,并设定 0 的阈值(函数会将负值变为零)f(x) = max(0, x)

下图 [2] 表示了上述的激活函数

对多层感知器和反向传播进行入门级的介绍,图 2:不同的激活函数。,第3张

图 2:不同的激活函数。

偏置的重要性:偏置的主要功能是为每一个节点提供可训练的常量值(在节点接收的正常输入以外)。神经元中偏置的作用,详见这个链接:

前馈神经网络

前馈神经网络是最先发明也是最简单的人工神经网络 [3]。它包含了安排在多个层中的多个神经元(节点)。相邻层的节点有连接或者边(edge)。所有的连接都配有权重。

图 3 是一个前馈神经网络的例子。

对多层感知器和反向传播进行入门级的介绍,图 3: 一个前馈神经网络的例子,第4张

图 3: 一个前馈神经网络的例子

一个前馈神经网络可以包含三种节点:

1. 输入节点(Input Nodes):输入节点从外部世界提供信息,总称为「输入层」。在输入节点中,不进行任何的计算——仅向隐藏节点传递信息。

2. 隐藏节点(Hidden Nodes):隐藏节点和外部世界没有直接联系(由此得名)。这些节点进行计算,并将信息从输入节点传递到输出节点。隐藏节点总称为「隐藏层」。尽管一个前馈神经网络只有一个输入层和一个输出层,但网络里可以没有也可以有多个隐藏层。

3. 输出节点(Output Nodes):输出节点总称为「输出层」,负责计算,并从网络向外部世界传递信息。

在前馈网络中,信息只单向移动——从输入层开始前向移动,然后通过隐藏层(如果有的话),再到输出层。在网络中没有循环或回路 [3](前馈神经网络的这个属性和递归神经网络不同,后者的节点连接构成循环)。

下面是两个前馈神经网络的例子:
1. 单层感知器——这是最简单的前馈神经网络,不包含任何隐藏层。你可以在 [4] [5] [6] [7] 中了解更多关于单层感知器的知识。

2. 多层感知器——多层感知器有至少一个隐藏层。我们在下面会只讨论多层感知器,因为在现在的实际应用中,它们比单层感知器要更有用。

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/2509370.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2022-08-05
下一篇 2022-08-05

发表评论

登录后才能评论

评论列表(0条)

保存