- 1. Configure
- 2. Backbone
- 代码部分
- 解析
- fast_pathway
- slow_pathway
- 3d-Resnet-50结构细节(Slow/Fast pathway公用)
- 总结
- 3. Head+Loss
- 代码部分
- 解析
model = dict(
type='Recognizer3D',
backbone=dict(
type='ResNet3dSlowFast',
pretrained=None,
resample_rate=8, # tau
speed_ratio=8, # alpha
channel_ratio=8, # beta_inv
slow_pathway=dict(
type='resnet3d',
depth=50,
pretrained=None,
lateral=True,
conv1_kernel=(1, 7, 7),
dilations=(1, 1, 1, 1),
conv1_stride_t=1,
pool1_stride_t=1,
inflate=(0, 0, 1, 1),
norm_eval=False),
fast_pathway=dict(
type='resnet3d',
depth=50,
pretrained=None,
lateral=False,
base_channels=8,
conv1_kernel=(5, 7, 7),
conv1_stride_t=1,
pool1_stride_t=1,
norm_eval=False)),
cls_head=dict(
type='SlowFastHead',
in_channels=2304, # 2048+256
num_classes=400,
spatial_type='avg',
dropout_ratio=0.5),
# model training and testing settings
train_cfg=None,
test_cfg=dict(average_clips='prob'))
2. Backbone
代码路径: mmaction2/mmaction/models/backbones/resnet3d_slowfast.py
# Copyright (c) OpenMMLab. All rights reserved.
import warnings
import torch
import torch.nn as nn
from mmcv.cnn import ConvModule, kaiming_init
from mmcv.runner import _load_checkpoint, load_checkpoint
from mmcv.utils import print_log
from ...utils import get_root_logger
from ..builder import BACKBONES
from .resnet3d import ResNet3d
try:
from mmdet.models import BACKBONES as MMDET_BACKBONES
mmdet_imported = True
except (ImportError, ModuleNotFoundError):
mmdet_imported = False
class ResNet3dPathway(ResNet3d):
"""A pathway of Slowfast based on ResNet3d.
Args:
*args (arguments): Arguments same as :class:``ResNet3d``.
lateral (bool): Determines whether to enable the lateral connection
from another pathway. Default: False.
speed_ratio (int): Speed ratio indicating the ratio between time
dimension of the fast and slow pathway, corresponding to the
``alpha`` in the paper. Default: 8.
channel_ratio (int): Reduce the channel number of fast pathway
by ``channel_ratio``, corresponding to ``beta`` in the paper.
Default: 8.
fusion_kernel (int): The kernel size of lateral fusion.
Default: 5.
**kwargs (keyword arguments): Keywords arguments for ResNet3d.
"""
def __init__(self,
*args,
lateral=False,
lateral_norm=False,
speed_ratio=8,
channel_ratio=8,
fusion_kernel=5,
**kwargs):
self.lateral = lateral
self.lateral_norm = lateral_norm
self.speed_ratio = speed_ratio
self.channel_ratio = channel_ratio
self.fusion_kernel = fusion_kernel
super().__init__(*args, **kwargs)
self.inplanes = self.base_channels
if self.lateral:
self.conv1_lateral = ConvModule(
self.inplanes // self.channel_ratio,
# https://arxiv.org/abs/1812.03982, the
# third type of lateral connection has out_channel:
# 2 * \beta * C
self.inplanes * 2 // self.channel_ratio,
kernel_size=(fusion_kernel, 1, 1),
stride=(self.speed_ratio, 1, 1),
padding=((fusion_kernel - 1) // 2, 0, 0),
bias=False,
conv_cfg=self.conv_cfg,
norm_cfg=self.norm_cfg if self.lateral_norm else None,
act_cfg=self.act_cfg if self.lateral_norm else None)
self.lateral_connections = []
for i in range(len(self.stage_blocks)):
planes = self.base_channels * 2**i
self.inplanes = planes * self.block.expansion
if lateral and i != self.num_stages - 1:
# no lateral connection needed in final stage
lateral_name = f'layer{(i + 1)}_lateral'
setattr(
self, lateral_name,
ConvModule(
self.inplanes // self.channel_ratio,
self.inplanes * 2 // self.channel_ratio,
kernel_size=(fusion_kernel, 1, 1),
stride=(self.speed_ratio, 1, 1),
padding=((fusion_kernel - 1) // 2, 0, 0),
bias=False,
conv_cfg=self.conv_cfg,
norm_cfg=self.norm_cfg if self.lateral_norm else None,
act_cfg=self.act_cfg if self.lateral_norm else None))
self.lateral_connections.append(lateral_name)
def make_res_layer(self,
block,
inplanes,
planes,
blocks,
spatial_stride=1,
temporal_stride=1,
dilation=1,
style='pytorch',
inflate=1,
inflate_style='3x1x1',
non_local=0,
non_local_cfg=dict(),
conv_cfg=None,
norm_cfg=None,
act_cfg=None,
with_cp=False):
"""Build residual layer for Slowfast.
Args:
block (nn.Module): Residual module to be built.
inplanes (int): Number of channels for the input
feature in each block.
planes (int): Number of channels for the output
feature in each block.
blocks (int): Number of residual blocks.
spatial_stride (int | Sequence[int]): Spatial strides
in residual and conv layers. Default: 1.
temporal_stride (int | Sequence[int]): Temporal strides in
residual and conv layers. Default: 1.
dilation (int): Spacing between kernel elements. Default: 1.
style (str): ``pytorch`` or ``caffe``. If set to ``pytorch``,
the stride-two layer is the 3x3 conv layer,
otherwise the stride-two layer is the first 1x1 conv layer.
Default: ``pytorch``.
inflate (int | Sequence[int]): Determine whether to inflate
for each block. Default: 1.
inflate_style (str): ``3x1x1`` or ``3x3x3``. which determines
the kernel sizes and padding strides for conv1 and
conv2 in each block. Default: ``3x1x1``.
non_local (int | Sequence[int]): Determine whether to apply
non-local module in the corresponding block of each stages.
Default: 0.
non_local_cfg (dict): Config for non-local module.
Default: ``dict()``.
conv_cfg (dict | None): Config for conv layers. Default: None.
norm_cfg (dict | None): Config for norm layers. Default: None.
act_cfg (dict | None): Config for activate layers. Default: None.
with_cp (bool): Use checkpoint or not. Using checkpoint will save
some memory while slowing down the training speed.
Default: False.
Returns:
nn.Module: A residual layer for the given config.
"""
inflate = inflate if not isinstance(inflate,
int) else (inflate, ) * blocks
non_local = non_local if not isinstance(
non_local, int) else (non_local, ) * blocks
assert len(inflate) == blocks and len(non_local) == blocks
if self.lateral:
lateral_inplanes = inplanes * 2 // self.channel_ratio
else:
lateral_inplanes = 0
if (spatial_stride != 1
or (inplanes + lateral_inplanes) != planes * block.expansion):
downsample = ConvModule(
inplanes + lateral_inplanes,
planes * block.expansion,
kernel_size=1,
stride=(temporal_stride, spatial_stride, spatial_stride),
bias=False,
conv_cfg=conv_cfg,
norm_cfg=norm_cfg,
act_cfg=None)
else:
downsample = None
layers = []
layers.append(
block(
inplanes + lateral_inplanes,
planes,
spatial_stride,
temporal_stride,
dilation,
downsample,
style=style,
inflate=(inflate[0] == 1),
inflate_style=inflate_style,
non_local=(non_local[0] == 1),
non_local_cfg=non_local_cfg,
conv_cfg=conv_cfg,
norm_cfg=norm_cfg,
act_cfg=act_cfg,
with_cp=with_cp))
inplanes = planes * block.expansion
for i in range(1, blocks):
layers.append(
block(
inplanes,
planes,
1,
1,
dilation,
style=style,
inflate=(inflate[i] == 1),
inflate_style=inflate_style,
non_local=(non_local[i] == 1),
non_local_cfg=non_local_cfg,
conv_cfg=conv_cfg,
norm_cfg=norm_cfg,
act_cfg=act_cfg,
with_cp=with_cp))
return nn.Sequential(*layers)
def inflate_weights(self, logger):
"""Inflate the resnet2d parameters to resnet3d pathway.
The differences between resnet3d and resnet2d mainly lie in an extra
axis of conv kernel. To utilize the pretrained parameters in 2d model,
the weight of conv2d models should be inflated to fit in the shapes of
the 3d counterpart. For pathway the ``lateral_connection`` part should
not be inflated from 2d weights.
Args:
logger (logging.Logger): The logger used to print
debugging information.
"""
state_dict_r2d = _load_checkpoint(self.pretrained)
if 'state_dict' in state_dict_r2d:
state_dict_r2d = state_dict_r2d['state_dict']
inflated_param_names = []
for name, module in self.named_modules():
if 'lateral' in name:
continue
if isinstance(module, ConvModule):
# we use a ConvModule to wrap conv+bn+relu layers, thus the
# name mapping is needed
if 'downsample' in name:
# layer{X}.{Y}.downsample.conv->layer{X}.{Y}.downsample.0
original_conv_name = name + '.0'
# layer{X}.{Y}.downsample.bn->layer{X}.{Y}.downsample.1
original_bn_name = name + '.1'
else:
# layer{X}.{Y}.conv{n}.conv->layer{X}.{Y}.conv{n}
original_conv_name = name
# layer{X}.{Y}.conv{n}.bn->layer{X}.{Y}.bn{n}
original_bn_name = name.replace('conv', 'bn')
if original_conv_name + '.weight' not in state_dict_r2d:
logger.warning(f'Module not exist in the state_dict_r2d'
f': {original_conv_name}')
else:
self._inflate_conv_params(module.conv, state_dict_r2d,
original_conv_name,
inflated_param_names)
if original_bn_name + '.weight' not in state_dict_r2d:
logger.warning(f'Module not exist in the state_dict_r2d'
f': {original_bn_name}')
else:
self._inflate_bn_params(module.bn, state_dict_r2d,
original_bn_name,
inflated_param_names)
# check if any parameters in the 2d checkpoint are not loaded
remaining_names = set(
state_dict_r2d.keys()) - set(inflated_param_names)
if remaining_names:
logger.info(f'These parameters in the 2d checkpoint are not loaded'
f': {remaining_names}')
def _inflate_conv_params(self, conv3d, state_dict_2d, module_name_2d,
inflated_param_names):
"""Inflate a conv module from 2d to 3d.
The differences of conv modules betweene 2d and 3d in Pathway
mainly lie in the inplanes due to lateral connections. To fit the
shapes of the lateral connection counterpart, it will expand
parameters by concatting conv2d parameters and extra zero paddings.
Args:
conv3d (nn.Module): The destination conv3d module.
state_dict_2d (OrderedDict): The state dict of pretrained 2d model.
module_name_2d (str): The name of corresponding conv module in the
2d model.
inflated_param_names (list[str]): List of parameters that have been
inflated.
"""
weight_2d_name = module_name_2d + '.weight'
conv2d_weight = state_dict_2d[weight_2d_name]
old_shape = conv2d_weight.shape
new_shape = conv3d.weight.data.shape
kernel_t = new_shape[2]
if new_shape[1] != old_shape[1]:
if new_shape[1] < old_shape[1]:
warnings.warn(f'The parameter of {module_name_2d} is not'
'loaded due to incompatible shapes. ')
return
# Inplanes may be different due to lateral connections
new_channels = new_shape[1] - old_shape[1]
pad_shape = old_shape
pad_shape = pad_shape[:1] + (new_channels, ) + pad_shape[2:]
# Expand parameters by concat extra channels
conv2d_weight = torch.cat(
(conv2d_weight,
torch.zeros(pad_shape).type_as(conv2d_weight).to(
conv2d_weight.device)),
dim=1)
new_weight = conv2d_weight.data.unsqueeze(2).expand_as(
conv3d.weight) / kernel_t
conv3d.weight.data.copy_(new_weight)
inflated_param_names.append(weight_2d_name)
if getattr(conv3d, 'bias') is not None:
bias_2d_name = module_name_2d + '.bias'
conv3d.bias.data.copy_(state_dict_2d[bias_2d_name])
inflated_param_names.append(bias_2d_name)
def _freeze_stages(self):
"""Prevent all the parameters from being optimized before
`self.frozen_stages`."""
if self.frozen_stages >= 0:
self.conv1.eval()
for param in self.conv1.parameters():
param.requires_grad = False
for i in range(1, self.frozen_stages + 1):
m = getattr(self, f'layer{i}')
m.eval()
for param in m.parameters():
param.requires_grad = False
if i != len(self.res_layers) and self.lateral:
# No fusion needed in the final stage
lateral_name = self.lateral_connections[i - 1]
conv_lateral = getattr(self, lateral_name)
conv_lateral.eval()
for param in conv_lateral.parameters():
param.requires_grad = False
def init_weights(self, pretrained=None):
"""Initiate the parameters either from existing checkpoint or from
scratch."""
if pretrained:
self.pretrained = pretrained
# Override the init_weights of i3d
super().init_weights()
for module_name in self.lateral_connections:
layer = getattr(self, module_name)
for m in layer.modules():
if isinstance(m, (nn.Conv3d, nn.Conv2d)):
kaiming_init(m)
pathway_cfg = {
'resnet3d': ResNet3dPathway,
# TODO: BNInceptionPathway
}
def build_pathway(cfg, *args, **kwargs):
"""Build pathway.
Args:
cfg (None or dict): cfg should contain:
- type (str): identify conv layer type.
Returns:
nn.Module: Created pathway.
"""
if not (isinstance(cfg, dict) and 'type' in cfg):
raise TypeError('cfg must be a dict containing the key "type"')
cfg_ = cfg.copy()
pathway_type = cfg_.pop('type')
if pathway_type not in pathway_cfg:
raise KeyError(f'Unrecognized pathway type {pathway_type}')
pathway_cls = pathway_cfg[pathway_type]
pathway = pathway_cls(*args, **kwargs, **cfg_)
return pathway
@BACKBONES.register_module()
class ResNet3dSlowFast(nn.Module):
"""Slowfast backbone.
This module is proposed in `SlowFast Networks for Video Recognition
`_
Args:
pretrained (str): The file path to a pretrained model.
resample_rate (int): A large temporal stride ``resample_rate``
on input frames. The actual resample rate is calculated by
multipling the ``interval`` in ``SampleFrames`` in the
pipeline with ``resample_rate``, equivalent to the :math:`\\tau`
in the paper, i.e. it processes only one out of
``resample_rate * interval`` frames. Default: 8.
speed_ratio (int): Speed ratio indicating the ratio between time
dimension of the fast and slow pathway, corresponding to the
:math:`\\alpha` in the paper. Default: 8.
channel_ratio (int): Reduce the channel number of fast pathway
by ``channel_ratio``, corresponding to :math:`\\beta` in the paper.
Default: 8.
slow_pathway (dict): Configuration of slow branch, should contain
necessary arguments for building the specific type of pathway
and:
type (str): type of backbone the pathway bases on.
lateral (bool): determine whether to build lateral connection
for the pathway.Default:
.. code-block:: Python
dict(type='ResNetPathway',
lateral=True, depth=50, pretrained=None,
conv1_kernel=(1, 7, 7), dilations=(1, 1, 1, 1),
conv1_stride_t=1, pool1_stride_t=1, inflate=(0, 0, 1, 1))
fast_pathway (dict): Configuration of fast branch, similar to
`slow_pathway`. Default:
.. code-block:: Python
dict(type='ResNetPathway',
lateral=False, depth=50, pretrained=None, base_channels=8,
conv1_kernel=(5, 7, 7), conv1_stride_t=1, pool1_stride_t=1)
"""
def __init__(self,
pretrained,
resample_rate=8,
speed_ratio=8,
channel_ratio=8,
slow_pathway=dict(
type='resnet3d',
depth=50,
pretrained=None,
lateral=True,
conv1_kernel=(1, 7, 7),
dilations=(1, 1, 1, 1),
conv1_stride_t=1,
pool1_stride_t=1,
inflate=(0, 0, 1, 1)),
fast_pathway=dict(
type='resnet3d',
depth=50,
pretrained=None,
lateral=False,
base_channels=8,
conv1_kernel=(5, 7, 7),
conv1_stride_t=1,
pool1_stride_t=1)):
super().__init__()
self.pretrained = pretrained
self.resample_rate = resample_rate
self.speed_ratio = speed_ratio
self.channel_ratio = channel_ratio
if slow_pathway['lateral']:
slow_pathway['speed_ratio'] = speed_ratio
slow_pathway['channel_ratio'] = channel_ratio
self.slow_path = build_pathway(slow_pathway)
self.fast_path = build_pathway(fast_pathway)
def init_weights(self, pretrained=None):
"""Initiate the parameters either from existing checkpoint or from
scratch."""
if pretrained:
self.pretrained = pretrained
if isinstance(self.pretrained, str):
logger = get_root_logger()
msg = f'load model from: {self.pretrained}'
print_log(msg, logger=logger)
# Directly load 3D model.
load_checkpoint(self, self.pretrained, strict=True, logger=logger)
elif self.pretrained is None:
# Init two branch separately.
self.fast_path.init_weights()
self.slow_path.init_weights()
else:
raise TypeError('pretrained must be a str or None')
def forward(self, x):
"""Defines the computation performed at every call.
Args:
x (torch.Tensor): The input data.
Returns:
tuple[torch.Tensor]: The feature of the input samples extracted
by the backbone.
"""
x_slow = nn.functional.interpolate(
x,
mode='nearest',
scale_factor=(1.0 / self.resample_rate, 1.0, 1.0))
x_slow = self.slow_path.conv1(x_slow)
x_slow = self.slow_path.maxpool(x_slow)
x_fast = nn.functional.interpolate(
x,
mode='nearest',
scale_factor=(1.0 / (self.resample_rate // self.speed_ratio), 1.0,
1.0))
x_fast = self.fast_path.conv1(x_fast)
x_fast = self.fast_path.maxpool(x_fast)
if self.slow_path.lateral:
x_fast_lateral = self.slow_path.conv1_lateral(x_fast)
x_slow = torch.cat((x_slow, x_fast_lateral), dim=1)
for i, layer_name in enumerate(self.slow_path.res_layers):
res_layer = getattr(self.slow_path, layer_name)
x_slow = res_layer(x_slow)
res_layer_fast = getattr(self.fast_path, layer_name)
x_fast = res_layer_fast(x_fast)
if (i != len(self.slow_path.res_layers) - 1
and self.slow_path.lateral):
# No fusion needed in the final stage
lateral_name = self.slow_path.lateral_connections[i]
conv_lateral = getattr(self.slow_path, lateral_name)
x_fast_lateral = conv_lateral(x_fast)
x_slow = torch.cat((x_slow, x_fast_lateral), dim=1)
out = (x_slow, x_fast)
return out
if mmdet_imported:
MMDET_BACKBONES.register_module()(ResNet3dSlowFast)
解析
fast_pathway
x_fast
nn.functional.interpolate()
Fast pathway在时间维度进行密集采样,空间维度不变。self.slow_path.conv1
kernel=(5,7,7)
时间+空间特征提取。输出尺度 ( N f a s t , 64 , 5 , H , W ) (N_{fast},64,5,H,W) (Nfast,64,5,H,W)
x_fast_lateral
ConvModule(kernel_size=(5, 1, 1), stride=(8, 1, 1))
从第一层conv得到的feature,接入一层时间维度卷积,给后续slow pathway的第一层conv特征进行特征融合。输出尺度 e.g. (N_slow,64,1,H,W)
self.res_layers
3d-Resnet-50结构x_fast_lateral
ConvModule(kernel_size=(5,1,1), stride=(8, 1, 1))
从最后一个stage得到的feature,接入一层时间维度卷积,给后续slow pathway的最后一个stage特征进行特征融合,
x_slow
nn.functional.interpolate()
Slow pathway在时间维度进行稀疏采样,空间维度不变。self.slow_path.conv1
kernel=(1,7,7)
空间特征提取。输出尺度 ( N s l o w , 64 , 1 , H , W ) (N_{slow},64,1,H,W) (Nslow,64,1,H,W)
torch.cat((x_slow, x_fast_lateral)
双流第一层卷积的slow分支和fast分支特征融合。输出尺度 e.g. (N_slow,128,1,H,W)
self.res_layers
3d-Resnet-50结构torch.cat((x_slow, x_fast_lateral)
双流最后一个stage的slow分支和fast分支特征融合。
resnet3d
多个Bottleneck3d
串行组合,每个Bottleneck3d
看做一个stageBottleneck3d
conv_module
不同stage的数量列表 = (3,4,6,3),conv_tride
列表 = (1,2,2,2)self.conv1
conv_module(3, 64, kernel=(3,7,7))
: 对时间+空间维度进行降尺度卷积,第一层3d卷积的感受野设置较大。Q:是否丢失细节过多,考虑3d focus-conv
self.maxpool
nn.MaxPool3d(kernel_size=(1, 3, 3), stride=(1,2,2), padding=(0, 1, 1))
对空间维度进行pooling。pooling是否可以改成strided-conv
self.pool2
nn.MaxPool3d(kernel_size=(2, 1, 1), stride=(2, 1, 1))
对时间维度进行pooling。self.res_layers
特征提取基础block通过多个conv_module
串行组合得到conv_module
x + 3*(conv + norm + act)(x)
最小组合- conv
nn.Conv3d(in_channels, out_channels, kernel_size = (kt, kh, kw), stride, padding)
特征图从二维变成三维,卷积参数增加了时间维度 - norm
nn.BatchNorm3d()
Q: BatchNorm2d/BatchNorm3d参数量是多少?
A: 每个channel需要存储4个参数,mean for moving-average(不用学习),variance for moving-average(不用学习),gamma(需学习),beta(需学习),因此参数量为num_channel*4 - act
nn.ReLU()
- conv
- Fast pathway采样密集,进行temporal特征提取,相对参数量较小;Slow pathway采样稀疏,进行spatial特征提取,相对参数量较大
- Slow pathway在模型开始和模型结尾都会融合Fast pathway特征,增加slow pathway对temporal特征的表达能力
代码路径:mmaction2/mmaction/models/heads/slowfast_head.py
# Copyright (c) OpenMMLab. All rights reserved.
import torch
import torch.nn as nn
from mmcv.cnn import normal_init
from ..builder import HEADS
from .base import BaseHead
@HEADS.register_module()
class SlowFastHead(BaseHead):
"""The classification head for SlowFast.
Args:
num_classes (int): Number of classes to be classified.
in_channels (int): Number of channels in input feature.
loss_cls (dict): Config for building loss.
Default: dict(type='CrossEntropyLoss').
spatial_type (str): Pooling type in spatial dimension. Default: 'avg'.
dropout_ratio (float): Probability of dropout layer. Default: 0.8.
init_std (float): Std value for Initiation. Default: 0.01.
kwargs (dict, optional): Any keyword argument to be used to initialize
the head.
"""
def __init__(self,
num_classes,
in_channels,
loss_cls=dict(type='CrossEntropyLoss'),
spatial_type='avg',
dropout_ratio=0.8,
init_std=0.01,
**kwargs):
super().__init__(num_classes, in_channels, loss_cls, **kwargs)
self.spatial_type = spatial_type
self.dropout_ratio = dropout_ratio
self.init_std = init_std
if self.dropout_ratio != 0:
self.dropout = nn.Dropout(p=self.dropout_ratio)
else:
self.dropout = None
self.fc_cls = nn.Linear(in_channels, num_classes)
if self.spatial_type == 'avg':
self.avg_pool = nn.AdaptiveAvgPool3d((1, 1, 1))
else:
self.avg_pool = None
def init_weights(self):
"""Initiate the parameters from scratch."""
normal_init(self.fc_cls, std=self.init_std)
def forward(self, x):
"""Defines the computation performed at every call.
Args:
x (torch.Tensor): The input data.
Returns:
torch.Tensor: The classification scores for input samples.
"""
# ([N, channel_fast, T, H, W], [(N, channel_slow, T, H, W)])
x_fast, x_slow = x
# ([N, channel_fast, 1, 1, 1], [N, channel_slow, 1, 1, 1])
x_fast = self.avg_pool(x_fast)
x_slow = self.avg_pool(x_slow)
# [N, channel_fast + channel_slow, 1, 1, 1]
x = torch.cat((x_slow, x_fast), dim=1)
if self.dropout is not None:
x = self.dropout(x)
# [N x C]
x = x.view(x.size(0), -1)
# [N x num_classes]
cls_score = self.fc_cls(x)
return cls_score
解析
- Head
nn.AdaptiveAvgPool3d((1,1,1))
x_fast和x_slow共用,三维版global average pooling
输入shape: [ N , c h a n n e l f a s t , T , H , W ] , [ ( N , c h a n n e l s l o w , T , H , W ) ] [N, channel_{fast}, T, H, W], [(N, channel_{slow}, T, H, W)] [N,channelfast,T,H,W],[(N,channelslow,T,H,W)]
输出shape: [ N , c h a n n e l f a s t , 1 , 1 , 1 ] , [ ( N , c h a n n e l s l o w , 1 , 1 , 1 ) ] [N, channel_{fast}, 1, 1, 1], [(N, channel_{slow}, 1, 1, 1)] [N,channelfast,1,1,1],[(N,channelslow,1,1,1)]cat + dropout + view(x.size(0), -1)
输入shape: [ N , c h a n n e l f a s t , 1 , 1 , 1 ] , [ ( N , c h a n n e l s l o w , 1 , 1 , 1 ) ] [N, channel_{fast}, 1, 1, 1], [(N, channel_{slow}, 1, 1, 1)] [N,channelfast,1,1,1],[(N,channelslow,1,1,1)]
输出shape: [ N , c h a n n e l f a s t + c h a n n e l s l o w ) ] [N, channel_{fast}+channel_{slow})] [N,channelfast+channelslow)]nn.Linear(in_channels, num_classes)
输入shape: [ N , c h a n n e l f a s t + c h a n n e l s l o w ) ] [N, channel_{fast}+channel_{slow})] [N,channelfast+channelslow)]
输出shape: [ N , c l a s s _ n u m ] [N, class\_num] [N,class_num]
- Loss:
CrossEntropyLoss
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)