封装技术伴随集成电路发明应运而生,主要功能是完成电源分配、信号分配、散热和保护。伴随着芯片技术的发展,封装技术不断革新。封装互连密度不断提高,封装厚度不断减小,三维封装、系统封装手段不断演进。随着集成电路应用多元化,智能手机、物联网、汽车电子、高性能计算、5G、人工智能等新兴领域对先进封装提出更高要求,封装技术发展迅速,创新技术不断出现。
于大全博士在分享中也指出,之前由于集成电路技术按照摩尔定律飞速发展,封装技术跟随发展。高性能芯片需要高性能封装技术。进入2010年后,中道封装技术出现,例如晶圆级封装(WLP,WaferLevelPackage)、硅通孔技术(TSV,ThroughSiliconVia)、2.5DInterposer、3DIC、Fan-Out等技术的产业化,极大地提升了先进封装技术水平。
当前,随着摩尔定律趋缓,封装技术重要性凸显,成为电子产品小型化、多功能化、降低功耗,提高带宽的重要手段。先进封装向着系统集成、高速、高频、三维方向发展。
图1展示了当前主流的先进封装技术平台,包括Flip-Chip、WLCSP、Fan-Out、EmbeddedIC、3DWLCSP、3DIC、2.5Dinterposer等7个重要技术。其中绝大部分和晶圆级封装技术相关。支撑这些平台技术的主要工艺包括微凸点、再布线、植球、C2W、W2W、拆键合、TSV工艺等。先进封装技术本身不断创新发展,以应对更加复杂的三维集成需求。当前,高密度TSV技术/Fan-Out扇出技术由于其灵活、高密度、适于系统集成,而成为目前先进封装的核心技术。
图1先进封装技术平台与工艺
封装技术的发展得益于互连技术的演进和加工精度的显著提高。目前三种主要用于集成电路(IC)芯片封装的互连技术分别为:引线键合技术(WireBond,WB)、倒装芯片技术(FlipChip,FC)和硅通孔技术(ThroughSiliconVia,TSV)。由于现代微电子晶圆级加工能力的大幅度提升,晶圆级封装的布线能力亿达到微米量级。从线宽互连能力上看,过去50年,封装技术从1000µm提高到1µm,甚至亚微米,提高了1000倍。微凸点互连节距也从几百微米,发展到当前3DIC的40微米节距,很快将发展到无凸点5微米以下节距。
图2主要封装技术发展
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)