基于Huggingface使用BERT进行文本分类的fine-tuning

基于Huggingface使用BERT进行文本分类的fine-tuning

随着BERT大火之后,很多BERT的变种,这里借用Huggingface工具来简单实现一个文本分类,从而进一步通过Huggingface来认识BERT的工程上的实现方法。


1、load data

train_df = pd.read_csv('../data/train.tsv',delimiter='\t',names=['text','label'])
print(train_df.shape)
train_df.head()

sentences = list(train_df['text'])
targets =train_df['label'].values

2、token encodding

#如果token要封装到自定义model类中的话,则需要指定max_len
tokenizer=BertTokenizer.from_pretrained('bert-base-uncased')
max_length=32
sentences_tokened=tokenizer(sentences,padding=True,truncation=True,max_length=max_length,return_tensors='pt')
targets=torch.tensor(targets)

3、encoding data

# from torchvision import transforms,datasets
from torch.utils.data import Dataset,DataLoader,random_split class DataToDataset(Dataset):
def __init__(self,encoding,labels):
self.encoding=encoding
self.labels=labels def __len__(self):
return len(self.labels) def __getitem__(self,index):
return self.encoding['input_ids'][index],self.encoding['attention_mask'][index],self.labels[index] #封装数据
datasets=DataToDataset(sentences_tokened,targets)
train_size=int(len(datasets)*0.8)
test_size=len(datasets)-train_size
print([train_size,test_size])
train_dataset,val_dataset=random_split(dataset=datasets,lengths=[train_size,test_size]) BATCH_SIZE=64
#这里的num_workers要大于0
train_loader=DataLoader(dataset=train_dataset,batch_size=BATCH_SIZE,shuffle=True,num_workers=5) val_loader=DataLoader(dataset=val_dataset,batch_size=BATCH_SIZE,shuffle=True,num_workers=5)#

4、create model

class BertTextClassficationModel(nn.Module):
def __init__(self):
super(BertTextClassficationModel,self).__init__()
self.bert=BertModel.from_pretrained('bert-base-uncased')
self.dense=nn.Linear(768,2) #768 input, 2 output def forward(self,ids,mask):
out,_=self.bert(input_ids=ids,attention_mask=mask)
out=self.dense(out[:,0,:])
return out mymodel=BertTextClassficationModel() #获取gpu和cpu的设备信息
device=torch.device("cuda" if torch.cuda.is_available() else "cpu")
print("device=",device)
if torch.cuda.device_count()>1:
print("Let's use ",torch.cuda.device_count(),"GPUs!")
mymodel=nn.DataParallel(mymodel)
mymodel.to(device)

5、train model

loss_func=nn.CrossEntropyLoss()
optimizer=optim.Adam(mymodel.parameters(),lr=0.0001) from sklearn.metrics import accuracy_score
def flat_accuracy(preds,labels):
pred_flat=np.argmax(preds,axis=1).flatten()
labels_flat=labels.flatten()
return accuracy_score(labels_flat,pred_flat) epochs=3
for epoch in range(epochs):
train_loss = 0.0
train_acc=0.0
for i,data in enumerate(train_loader):
input_ids,attention_mask,labels=[elem.to(device) for elem in data]
#优化器置零
optimizer.zero_grad()
#得到模型的结果
out=mymodel(input_ids,attention_mask)
#计算误差
loss=loss_func(out,labels)
train_loss += loss.item()
#误差反向传播
loss.backward()
#更新模型参数
optimizer.step()
#计算acc
out=out.detach().numpy()
labels=labels.detach().numpy()
train_acc+=flat_accuracy(out,labels) print("train %d/%d epochs Loss:%f, Acc:%f" %(epoch,epochs,train_loss/(i+1),train_acc/(i+1)))

6、evaluate

print("evaluate...")
val_loss=0
val_acc=0
mymodel.eval()
for j,batch in enumerate(val_loader):
val_input_ids,val_attention_mask,val_labels=[elem.to(device) for elem in batch]
with torch.no_grad():
pred=mymodel(val_input_ids,val_attention_mask)
val_loss+=loss_func(pred,val_labels)
pred=pred.detach().cpu().numpy()
val_labels=val_labels.detach().cpu().numpy()
val_acc+=flat_accuracy(pred,val_labels)
print("evaluate loss:%d, Acc:%d" %(val_loss/len(val_loader),val_acc/len(val_loader)))

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/zaji/588111.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2022-04-12
下一篇 2022-04-12

发表评论

登录后才能评论

评论列表(0条)

保存