人工智能与医学影像的完美结合

人工智能与医学影像的完美结合,第1张

AI医学影像的结合起步很早却难有大的突破。医学影像是指为了医疗或医学研究,对人体或人体某部分,以非侵入方式取得内部组织影像的技术与处理过程。自第一张X光片出现后,随着20世纪科学技术的发展,逐渐形成了以X射线、CT、磁共振成像、超声和核医学等为代表的多种医学影像技术设备,成为医疗绝大多数数据的来源。

人工处理的困难与枯燥,使人们很早就想利用AI解决这些问题。1963年,美国放射学家洛德威克(Gwilym S. Lodwick)等人提出X光片数字化的方法。1966年,莱德利正式提出了“计算机辅助诊断”的概念(CAD),希望通过计算机来减轻医生的工作负担。1972年,CT的临床使用开创了医学影像数字化的先河。之后,MRI、CR、DR、ECT等数字化医疗设备的产生,推动了医学图像资料的存储、传输系统的发展。

因此,1982年,美国放射学会(ACR)和电气制造商协会(NEMA)决定共同成立一个称为ACR-NEMA的委员会,致力于制订医学影像设备间共同的通信交流规范。1985年和1988年,ACR-NEMA发布了两套规范(ACR-NEMA 1.0和ACR-NEMA 2.0),并于1993年发布了一套统一的规范,正式命名为DICOM3.0,详细地规定了医学图像及其相关信息的传输协议。

虽然图像存储与传输标准有所发展,但是AI与医学影像的结合仍然困难重重。例如,医学专家系统在诞生后,虽然在20世纪80年代红极一时,但一直难于应用在医学影像领域。造成AI与医学影像难以结合的主要原因是视觉系统成像模糊、人体组织结构或功能的复杂性及传统算法的局限性。2006年,深度算法的出现为图像识别带来突破性的进展。2012年,欣顿使用多层卷积神经网络结构,将图像识别错误率突破性地从26.2%降低到了3%,让深度机器学习进入工业和医疗的领域。

2014年,国际知名的医学影像公司EnliTIc成立,并开发出从X光照片和CT扫描图像识别恶性肿瘤的软件。2015年,美国西奈山医院使用的一种名为Deep PaTIent的AI技术,分析该院70万名患者的病历数据,表现十分优异。2017年,美国食品药品管理局(FDA)批准了第一款心脏磁共振成像人工智能分析软件Cardio DL。2018年,FDA批准了全球第一款人工智能医疗设备IDx-DR。目前,中国有超过100家医疗人工智能公司,其中约有40家企业属于医学影像AI公司,近千家医院部署的人工智能系统中超过一半是医学影像人工智能系统。

智能机器人是指具有视、听、触等机器感觉,行动、规划、决策等机器思维,机械手、脚的智能控制结构的机器人,是人工智能的又一个重要研究方向。作为一种新型的人工智能技术,会对整个医疗行业产生深远影响。

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/2512714.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2022-08-05
下一篇 2022-08-05

发表评论

登录后才能评论

评论列表(0条)

保存