德州仪器 (TI) 于上世纪 70 年代推出了微控制器 (MCU),并已在众多的平台中运用了此项技术,包括超低功耗 MSP430™ MCU 产品系列。MSP430 MCU 十多年来一直是业界超低功耗技术的领先者,而且每一代新型架构皆专注于创造全新的功耗与效率指标记录。
MSP430 架构业已提供了仅在需要时才唤醒的智能外设、允许 MCU 内部的模块以不同频率运作的灵活定时、以及先进的电源管理技术等,这些只是其诸多创新成果中的几个而已。虽然贵为业界领袖,但 TI 并未因此沾沾自喜固步自封,而是一如既往地投入巨资不断地开发最先进的超低功耗技术。
凭借“金刚狼 (Wolverine)”MCU 平台(因其运用了激进的节能技术而拥有了这一代号),TI 创立了下一代 MSP430 架构(见图 1)。这款新型平台将 MCU 的功率与能源消耗锐减了一半以上,从而使超低功耗性能迈上了一个新台阶。
* 据美国史密森研究所 (Smithsonian InsTItution) 提供的资料。
图 1:凭借“金刚狼”MCU 平台(因其运用了激进的节能技术而拥有了这一代号),TI 创建了下一代 MSP430 架构,其将 MCU 的功率与能源消耗锐减了一半以上,从而使超低功耗性能迈上了一个新台阶。
· 运行模式功耗低至 100μA/MHz
· 待机流耗低于 400 nA(RTC 和欠压保护模式)
· FRAM 每位能耗下降了 250 倍
· 可在不到 7μs 的时间里从待机模式唤醒至运行模式
TI“金刚狼”平台之所以实现了引人注目的功耗性能提升,凭借的是其新型 130 nm 超低漏电 (ULL) 工艺技术、集成型低功耗非易失性存储器以及利用先进的电源管理与高精度低功耗模拟组件得以增强的 MSP430 原生优势。
130 nm 超低漏电 (ULL) 工艺技术
鉴于超低功耗器件有 99.9% 的时间都处于待机模式,因此在较小的工艺几何尺寸下,漏电流便成为了决定功率效率的一个关键因素。低功耗设计的挑战源于晶体管漏电流的指数性增加(因栅极长度的不断缩减及栅极氧化物所致)。
漏电流基于电子在节点之间必须移动的距离,而随着这个距离的不断缩小,电子在节点之间的泄放越来越容易。以基于 25 nm 或 45 nm 工艺的 PC 用高性能微处理器 (MPU) 为例,其必须使用特殊的材料来控制漏电。对于 MCU,漏电流从 180 nm CMOS 工艺节点开始变成了一个重要的考虑因素。
通过其在 65 nm、45 nm 和 28 nm 工艺节点上设计的 GHz 智能手机处理器和数字信号处理器 (DSP),TI 对于较小工艺节点下的漏电流了如指掌,而且 TI 的工程师们把学到的有关这些较小工艺几何尺寸下的漏电流特性的知识,全部都应用到了“金刚狼”的 130 nm 工艺中。
历史上,MCU 设计人员往往将其创新的着重点放在提高性能和密度上。自 1965 年以来,摩尔定律 (Moore’s Law) 一直在推动着晶体管和芯片性能的提升。虽然这种改进的步伐在过去的 10 年间有所放缓,但工艺技术每 18 个月将性能提升一倍的历史,已经有 30 多年了。
就 130 nm“金刚狼”平台而言,TI 通过专为提升功率效率而设计,并针对较低漏电流和其他硅工艺固有特性而优化的电路,恢复了摩尔定律在改善功耗(而非性能)指标方面的作用。尽管没有像采用传统方法时那样将性能提升一倍,但 TI 却代之以功耗的减半(也就是将功耗指标改善了一倍),同时保持了现今 MSP430 MCU 架构的高性能。
结果,与其他 130 nm CMOS 工艺相比,各个晶体管的最小漏电流将至少减低10 倍,而运行功耗则总体下降了 15%(图 2)。
图 2:采用低漏电法虽未提高性能,却可以保持低的功率损失,同时充分利用工艺尺寸缩小带来的运行功耗下降优势。结果是:漏电流减低 10 倍,而运行功耗总体下降了 15%。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)