验证存储系统性能是否强大通常会选择各种测试跑分看结果,然而对比性能就可以发现真实世界的工作负载与实验室综合工作负载差别极大,通过后者直接应用显然不太现实。而真实世界的工作负载则能够应用于优化,设计,验证应用软件,也可以针对真实的应用需求选择适合类别的SSD和数量。
SNIA固态存储技术小组主席Eden Kim(右一)和Trust-tek公司技术支持经理蒋伸亿
2018年12月12日,在中国存储与数据峰会,存储开发者论坛上,SNIA固态存储技术小组主席Eden Kim和Trust-tek公司技术支持经理蒋伸亿一起为大家带来《性能对比-真实世界工作负载vs实验室综合工作负载》。
以下为演讲实录:
存储系统遭遇到很大的压力时,会出现拥堵问题,不管是云计算应用还是云部署到设备上的应用,终端硬件本身的性能压力。因此前几位演讲人他们讲了很多的方法,通过很多的算法和架构的改变,软件的不同部署,来去解决这个网络拥堵的问题。
但我们介绍的主题是回归到基本原理,他们在解决拥堵问题的时候,最基本的出发点就是存储数据量的移动,它的真实负载到底是怎么样的,它的块大小和队列深度都是实时在变化的,所以如果能先从基本方向去了解它的工作负载内容,对后续解决拥堵的问题,肯定是更有效率的,因此我们今天会针对如何去分析真实世界工作负载,与实验室负载有什么样性能的差异向大家分享我们研究的结果。
第一个重点是所有现在的数据中心或云存储的性能,他跟真实的工作负载具有很大的相关性,这些所有的系统架构上为了要优化和设计阶段再验证的阶段需要考虑真实负载对系统的影响,以及对它未来采购SSD,如果得到性价比最高的SSD,应用在各种不同的应用服务上是很重要的事情。
所有的这些真实世界工作负载都可以在不同服务器上抓取,这些负载会按照不同硬件配置有不同的行为,所以性能测试真的跟真实负载有很直接的关系,现在最重要的就是真实工作负载会对你的系统造成很大的性能缺陷。
因此透过所有的真实工作负载,我们可以去了解,在长时间提供服务的整体情况下,你的实时负载变化,你可以透过这样的工作负载的内容去做一些东西,比如双十一的时候,可能流量会很大,如果去分解流量,或者说过年过节的时候,很多网络拥堵的问题,如何去解决?
另外进行软件的优化或者互联的测试,甚至对于一些实际遭遇的状况,我们都可以透过真实工作负载找到它的蛛丝马迹,来进行错误事项分析,最后可能对于服务器或者存储设备的合格验证也会用负载当做一个基础,通过这个基础来考验存储本身的性能。
这是一张很大的架构图,现在存储系统架构中,云的一些应用程序、进程、存储架构可能走不通的界面,像是fabric,或者是ethenet或者是infinband,所有的数据你可以想象终端用户在网页挑选的任何一个按纽,这个读写的请求经过以太网进入到云服务里,如何进入到本地,网络拥堵就是同时有太多人在本地敲下了读写的需求。
所以这个时候流量会非常大,这些流量可能在不同的时间点,在架构里每一个不同的硬件架构或者软件的开发层上都有不同的负载行为,所以我们的工具要能够去在不同的内容,按照每一个不同的系统开发商提供的不同解决方案,在不同的内容抓取它的负载,透过真实的工作负载,就可以对这一个拥堵问题去提供一些好的解决方案,甚至是设计一些很好的算法,来解决这些问题。
我们来看看真实的负载和随机生成的负载有多大的差距。
这是一家零售商网站的服务器,下面是一个windows系统,我们在IO上看它负载,可以看到它跟我们实验室的负载不一样,这个用的是不同系统,真正所有的主要特性在这里贡献了6%的IO行为。在24小时的负载里面,所有的IO在不断的变化,在凌晨的时间有一个备份动作,所以有一个很高的IO出来,其余的部分你可以想象在这个不同的离散时间点里面,有很多不同的用户登陆服务器做读写访问,所以通过IO我们可以理解真实负载跟实验室负载有很大的差别,我们不能单纯的在意4K或者64K和大流量148K做性能和流量的检测。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)