引言
桥梁的健康监测具有一些特性,譬如:一座桥梁是一个地理上的分布式系统,通常长达几千米到数十千米;桥梁通常工作于恶劣的环境,并在桥梁工作时采集数据;监测是一个长期过程,也必然是一个遥测过程,而且,由于地理距离和恶劣的环境,最好能够使现场维护降到最少;监测是一个连续的实时过程,其间有大量数据采集,需要采用智能技术获取表征信息以根据数据进行评估。这些特性构成了桥梁健康监测系统的开发过程中需要解决的挑战。
桥梁监测系统初探
对于一座正常工作的桥梁,所需的监测项基本源于三个类别:环境、维护和事故监测。
总而言之,需要监测的主要项目如下:环境监测包括大气温度、风速、氯离子的侵蚀、海浪;静态响应与动态响应的监测包括结构变形、结构压力等。
以连接上海市与洋屿的东海大桥为例,大桥的测量系统遍布整个桥体。将全长32公里的桥分为几个部分,每个部分都安置一个信号采集站,站点间距离为几千米到数十千米。这些分布在指定地点的信号采集站构成了整个数据采集系统。每个站点充当其附近传感器的主机系统。每个站点的功能特性如下:根据所连接传感器的类型,进行多种格式的数据采集、信号调理、数据处理与管理和数据传输等功能。
鉴于所处的恶劣工作环境,这些站点必须耐受(但决不限于)水、湿气、灰尘、冲击及特别是由盐造成的化学腐蚀。而且,工作站点必须具有高坚固性、可靠性和可维护性。
除硬件系统以外,远程配置、管理和传输采集数据属于软件需求。LabVIEW套件是一组软件,它通过与NI PXI模块及包括网络在内的其它相关硬件的无缝集成并采用恰当的抽象和封装,实现了高效监测的目的。
同步:基于GPS的解决方案
实现数据采集系统的主要挑战之一是同步问题——必须实现广阔地理范围内的同步。对此问题的解决方案是采用GPS定时信号。每个站点与一个GPS接收装置连接。接收装置接收GPS同步信号,进而发送至站点内的PXI模块。GPS同步信号用以确保整个分布式系统数据采集的严格同步。
GPS定时信号
GPS系统由每12小时围绕地球旋转一周的24个人造卫星组成。其中,每一个人造卫星都拥有一个精度为10-13秒的板上原子时钟。GPS的人造卫星以1.5GHz的载波频率连续发送其空间坐标以及时间信息。特别地,该时间信息可用于精确地关联、触发和时间标记测量数据。来自GPS接收装置的典型GPS定时信号有两种类型。
第一种信号类型是PPS,如图1所示。
图1 PPS信号
图1中的信号也称为1 PPS,因为它每秒只输出一个脉冲。它通常用作采集的触发信号。PPS类型信号的另一个实例是10M PPS,它每秒产生10M个脉冲。该信号通常用作采样基频。
第二种信号类型是DC-Level的IRIG-B。IRIG是一种承载绝对时间的编码晶体管-晶体管逻辑(TTL)信号,每秒重复或再同步。对于IRIG,每帧为1s。图2所示为IRIG-B标准的一个定时框图。
图2 IRIG-B信号
每个比特用一个周期为10ms的信号来表示,“0”的高电平持续时间为2ms,“1”的高电平持续时间为5ms,而“P”高电平持续时间为8ms。在1s帧内,P比特将秒和分钟、分钟和小时等分隔开。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)