(文章来源:爱电子)
ADC是指将连续变化的模拟信号转换为离散的数字信号的器件。真实世界的模拟信号,例如温度、压力、声音或者图像等,需要转换成更容易储存、处理和发射的数字形式。模/数转换器可以实现这个功能,在各种不同的产品中都可以找到它的身影。本文主要讲解关于ADC的几个关键参数。
模拟信号在时域上是连续的,因此可以将它转换为时间上连续的一系列数字信号。这样就要求定义一个参数来表示新的数字信号采样自模拟信号速率。这个速率称为转换器的采样率(sampling rate)或采样频率(sampling frequency)。
可以采集连续变化、带宽受限的信号(即每隔一时间测量并存储一个信号值),然后可以通过插值将转换后的离散信号还原为原始信号。这一过程的精确度受量化误差的限制。然而,仅当采样率比信号频率的两倍还高的情况下才可能达到对原始信号的忠实还原,这一规律在采样定理有所体现。
由于实际使用的模拟数字转换器不能进行完全实时的转换,所以对输入信号进行一次转换的过程中必须通过一些外加方法使之保持恒定。常用的有采样-保持电路,在大多数的情况里,通过使用一个电容器可以存储输入的模拟电压,并通过开关或门电路来闭合、断开这个电容和输入信号的连接。许多模拟数字转换集成电路在内部就已经包含了这样的采样-保持子系统。
所有的模拟数字转换器以每隔一定时间进行采样的形式进行工作。因此,它们的输出信号只是对输入信号行为的不完全描述。在某一次采样和下一次采样之间的时间段,仅仅根据输出信号,是无法得知输入信号的形式的。如果输入信号以比采样率低的速率变化,那么可以假定这两次采样之间的信号介于这两次采样得到的信号值。然而,如果输入信号改变过快,则这样的假设是错误的。
如果模拟数字转换器产生的信号在系统的后期,通过数字模拟转换器(digital to analog converter, DAC),则输出信号可以忠实地反映原始信号。如经过输入信号的变化率比采样率大得多,则是另一种情况,模拟数字转换器输出的这种“假”信号被称作“混叠”。混叠信号的频率为信号频率和采样率的差。例如,一个2千赫兹的正弦曲线信号在采样率在1.5千赫兹采样率的转换后,会被重建为500赫兹的正弦曲线信号。这样的问题被称作“混叠”。
为了避免混叠现象,模拟数字转换器的输入信号必须通过低通滤波器进行滤波处理,过滤掉频率高于采样率一半的信号。这样的滤波器也被称作反锯齿滤波器。它在实用的模拟数字转换系统中十分重要,常在混有高频信号的模拟信号的转换过程中应用。
尽管在大多数系统里,混叠是不希望看到的现象,值得注意的是,它可以提供限制带宽高频信号的同步向下混合(simultaneous down-mixing ,请参见采样过疏和混频器)。
模拟数字转换器的速度根据其种类有较大的差异。威尔金森模拟数字转换器受到其时钟率的限制。频率超过300兆赫兹已经成为可能。转换所需的时间直接与通道的数量成比例。对于一个逐次逼近(successive-approximaTIon)模拟数字转换器,其转换时间与通道数量的对数成比例。这样,大量通道可以使逐次逼近转换器比威尔金森转换器快。然而,威尔金斯转换器小号的时间是数字的,而逐次逼近转换器是模拟的。由于模拟的自身就比数字的更慢,当通道数量增加,所需的时间也增加。这样,其在工作时具有相互竞争的过程。Flash模拟数字转换器是这三种里面最快的一种,转换基本是以一个单独平行的过程。对于一个8位单元,转换可以在十几个纳秒的时间内完成。
人们期望在速度和精确度之间达到一个最佳平衡。Flash模拟数字转换器具有与比较器水平的漂移和不确定性,这将导致通道宽度的不均一性。结果是Flash模拟数字转换器的线性不佳。对于逐次逼近模拟数字转换器,糟糕的线性也很明显,不过这还是比Flash模拟数字转换器好一点。这里,非线性是源于减法过程的误差积累。在这一点上,威尔金森转换器是表现最好的。它们拥有最好的微分非线性。其他种类的转换器则要求通道平滑,以达到像威尔金森转换器的水平。
(责任编辑:fqj)
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)