无线信道干扰和负载分布不均匀严重影响无线网络的网络吞吐量、端到端延时等。在已有的路由度量的基础上,充分继承其通过邻居节点负载描述干扰强度的优势,进一步分析节点负载的影响,提出负载均衡的干扰感知路由度量,将干扰邻居节点的数量、负载和距离综合作用结果作为流间干扰强度,使用节点处的平均队列长度捕捉节点负载,并改进期望传输时间消除链路的不对称性,实现负载均衡和干扰感知,避开热点区域。同时将LBIA合并入路由协议。仿真结果表明:该路由度量可以有效地实现网络负载均衡,提升网络整体性能。
在无线网络中,无线网状网(WMN)[1]因其综合了传统的AdHoc和WLAN的优势,作为3G蜂窝系统和无线局域网的替代方案,成为有前景的下一代无线网络。而路由问题一直是面临的技术挑战之一,为了保证端到端的通信性能,进而获得较高的网络容量,作为路由问题的核心,有效的路由度量对于找到高吞吐量的路径是必不可少的。
1 相关工作
决定路由协议性能最关键的部分是路由度量的设计,找到具有高数据速率、低丢包率和低水平干扰的路径,是衡量路由度量好坏的标准。针对多接口多信道WMN路由度量研究已经广泛展开。HOP[2]作为最早的路由度量机制已经广泛应用到无线多跳网络;ETX[3]引入丢包率来测量链路质量;ETT[4]在ETX的基础上考虑传输速率,但ETT和ETX均未考虑干扰对于路径选择的影响;MIC[5]是干扰感知路由度量,将延伸到同时考虑流间干扰和流内干扰,还有链路丢包率和传输速率。
ILA(Interference-Load Aware rouTIng metric)[6]用邻居节点的平均负载来衡量流间干扰的强度,但平均负载并不能真实反映流间干扰水平,对路径选择造成不小的偏差。此外ILA未考虑节点本身负载,且基于ETT,会造成链路质量不准确估计。
2 ILA路由度量
首先对现有的干扰负载感知路由度量进行简要介绍,如式(1)所示:
其中,p为路径,n为链路数,m为链路l上的节点数。MTI(Metric of Traffic Interference)捕捉流间干扰如式(2)所示,CSC(Channel Switching Cost)捕捉流内干扰。参数是用来权衡流内干扰和流间干扰的权重。
其中,ALLij(Average Interference Load)是在信道C上节点i、j之间干扰邻居节点的平均负载。ETT用来确定传输速率和丢包率的差别。AIL描述干扰节点的邻居节点活跃性,定义为:
其中,ILij(C)是干扰邻居的负载,用平均队列长度来表示。
CSC通过给定使用同一信道的连续链路更高的权重来减少流内干扰,下文将详细讨论。
ILA路由度量捕捉了流间和流内干扰,但仍存在局限性。
3 LBIA路由度量
本文提出负载均衡的干扰感知路由度量(Load Balanced Interference-Aware RouTIng Metric,LBIA),有以下改进:
(1)通过干扰邻居节点距离对干扰邻居节点负载的计算进行优化,得到更准确的干扰水平。
(2)通过节点负载,选择负载较小的节点作为传输路径,节省等待队列传输的时间,得到较低的端到端延迟。
(3)对原ETT进行改进,消除传输不对称性,提高合理性,正确评估链路质量。
链路l的LBIA定义为:
LBIA由3部分组成:NIL(Neighbout Interference Load)为邻居干扰节点表征的流间干扰程度,是邻居干扰节点的数量、负载和与受干扰节点间的距离共同作用的结果;NL(Node Load)为被干扰节点自身的负载,由缓存队列的长度来捕捉负载;CSC为流内干扰大小。这样通过关注通信负载、节点负载、丢包率、传输速率、流内干扰和流间干扰,突破现有路由度量的有限性。
3.1 ETT的改进
ETT是应用最广泛的路由度量,但不对称性使得高估链路质量,对路由选择造成偏差,如式(6)所示:
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)