过去,高速光网络的调制方式就是简单地以高速率对光波幅度进行打开和关断便已足够满足需求。但是现在,光链路正在沿着无线通信所走过的路向更复杂的调制方式发展。复杂调制制式已经超越了开关键控的层次,开始使用幅度和相位信息对通信符码进行编码。光调制分析仪是适用于对目前此类光调制制式进行分析的仪器,它支持40G/100G/400G 的传输速率,是进行传输速率超过 100 Gb/s 的尖端科研的最佳仪器。
光调制分析仪的核心应用是表征发射机输出端或链路上的矢量调制信号的信号质量。最重要的分析和测量内容和参数是 :
● 光星座图
● 误差矢量幅度 (EVM)
● 相位误差
● 物理层 BER
● CD、一阶 PMD 补偿和测量
● 正交误差
● IQ 不平衡
● I 或 Q 眼图
● 高分辨率光谱
● 相对分析工具的光谱图
● 激光器线宽
● 分析符号的偏振
● 支持 30 多种调制制式
● 自适应均衡
● 可变相位跟踪带宽
光调制分析仪的原理框图
图1是典型的光调制分析仪N4391A的照片。从图中可看出,光调制分析仪主要由3部分组成:硬件的光参考接收机,宽带示波器,89601B矢量信号分析软件。
图1 N4391A光调制分析仪照片
实际的原理框图如图2所示。光参考接收机把高速的光信号变成IQ的电信号,利用示波器的4通道的高速相差ADC进行信号的采集,采集后先进行硬件的校验,然后利用89601B进行类似于无线通信的参数分析,也可以在89601B软件里嵌入自己的算法,最后在89601B的界面上现实各种处理分析结果。
图2 光调制分析仪原理框图
光 I-Q 图
I-Q 图也称极性图或矢量图,可以显示解调数据,即X 轴上相位内信号 (I) 与 Y 轴上正交相位信号 (Q) 的轨迹。此工具可以更深入地分析信号转换行为,显示过冲或指示信号在未靠近直线位置转换时带宽是否受限的迹象。
光星座图
在星座图中,信息在二维极坐标图中显示,表现信号的幅度和相位。星座图显示对应符码时钟时间的 I-Q 位置。这些点通常称为探测决定点,命名为符码。星座图可用于识别幅度失衡、正交误差或相位噪声等。星座图可用于快速分析传输信号的质量,因为星座图的各个点可以显示失真或偏置。此外,量化偏置和失真参数,可以轻松地与其它测量进行对比。
符码表 / 误差概述
这是利用数字解调工具强大功能获得的一个结果。可以看到解调比特,以及解调符码的错误统计。查看rms EVM 值可以快速评估调制精度,下图也显示了其它重要参数的报告。
● 频率误差
● I-Q 偏置
● 正交误差
● 增益失衡
I 或 Q 信号的眼图
眼图是 I ( 实部 ) 或 Q ( 虚部 ) 信号随时间变化的轨迹,由符号时钟触发。显示可以配置,以同时显示信号的实部眼图 (I) 和虚部眼图 (Q)。眼图是光开关键控调制分析中常用的分析工具。但此处的分析功能添加了虚部。这一工具可以支持对比 I 和 Q 眼图,快速发现可能的失衡。
误差矢量幅度
误差矢量时间轨迹显示 I-Q 测量信号与 I-Q 参考信号对应符号点之间的计算所得误差矢量。数据可以作为误差矢量幅度、误差矢量相位、仅 I 分量或仅 Q 分量显示。该工具可以快速查看信号与理想信号的差异程度。
误差矢量这个概念是证明复数调制信号总体性能的一个好办法。根据合格 / 不合格标准进行的测试可以将发射机生产、校准过程中或链路传输信号过程中可能发生的所有典型误差来源都纳入测试范围。当部署新的链路来传输复数调制信号时,可以使用这个 *** 作简单但功能强大的合格 / 不合格测试工具,根据已定义的限制对物理层信号质量进行测试。能够获得质量符合预期的物理层信号,是顺利执行更高层测试协议的先决条件。
比特 / 符号 / 误差分析
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)