FIFO芯片和单片机实现的图像采集系统

FIFO芯片和单片机实现的图像采集系统,第1张

  在单片机应用系统中,由于图像采集速度、程序存储器和数据存储器的寻址空间的限制,要完整存储30 fps、640×480像素大小的一幅图像是相当困难的。本文运用较高性能的16位飞思卡尔单片机在超高频的情况下直接采集图像,也只能采集到每行320个像素,丢失图像,无法获得一幅完整的图像。本文通过在图像采集过程中增加FIFO芯片AL422B较好地解决了这一问题,相对于采用昂贵的DSP而言,降低了图像采集系统的成本。

  1 单目点光源测距原理

  野外作业时,需要在运动中知道前方标杆和观察点之间的距离。本文将标杆制成等间距红外点光源标杆,满足了基于单帧静态图像的小孔成像原理测距模型要求,减少了图像处理量,提高了测量的实时性、全天候性。H为各点光源标杆的实际距离;n为点光源个数,它可以通过图像处理获得;f为摄像头焦距;标尺实际像素物理距离h由摄像头标定取得。远距离测距原理示意图如图1所示,整条点光源标杆都在摄像头视野范围内。近距离测距原理示意图如图2所示,点光源标杆只有部分在摄像头范围内。通过图1,可求出前方标杆与观察点的距离D.摄像机的成像几何关系也可用小孔成像原理来近似表示:

  

FIFO芯片和单片机实现的图像采集系统,第2张

 

  

FIFO芯片和单片机实现的图像采集系统,图1 远距离测距原理示意图,第3张

 

  

FIFO芯片和单片机实现的图像采集系统,图2 近距离测距原理示意图,第4张

 

  2 图像采集系统硬件设计

  根据单目视觉测距的要求,需要通过一黑白摄像头实时采集前车的点光源标杆,通过标尺上点光源所在的像素距离推算出前车距离。为了能完整地读取图像,本文增加了FIFO芯片,图像采集原理示意图如图3所示。由单片机监测摄像头的行/场信号,控制FIFO读取相应的图像;读完所有行后,关闭FIFO读取图像功能,开始由单片机从FIFO中读取图像数据,并进行相应的图像处理,根据图像处理的复杂程度,决定图像处理和图像采集的时间比。由于FIFO是先入先出,其读取数据时单片机只需通过中断使能行/场信号,绝大部分时间单片机可以用来进行图像处理。本文采取的是采集一帧图像后,单片机利用两帧图像的空闲时间和下一帧FIFO采集时间,共约3帧时间进行图像处理和控制,其结果是图像由原来的30 fps,变成10fps.尽管帧率慢了,但经过分析得知,在100 km/h情况下,滞后距离2.8 m,可以满足要求。

  

FIFO芯片和单片机实现的图像采集系统,图3 图像采集原理示意图,第5张

 

  2.1 飞思卡尔16位单片机MC9S12DG128

  本文采用飞思卡尔1 6位单片机MC9S12DG128作为主控芯片,该芯片是Freescale公司推出的S12系列微控制器中的一款增强型、汽车级的16位微控制器,片内总线时钟频率最高可达25 MHz,集成了8 KB的RAM、128KB的Flash、2 KB的EEPROM,集成度高,资源也相当丰富。

  2.2 摄像头芯片OV7670

  OV7670是OmniVision公司推出的Camerachiptm图像传感器,体积小,工作电压低。VGA图像最高达到30fps.其主要特性为:

  ◆感光阵列(共有656×488个像素,在YUV的模式中有效像素为640×480个);

  ◆高灵敏度适合低照度应用,对红外光线敏感;

  ◆标准的SCCB接口,兼容I2C总线接口;

  ◆RawRGB、RGB(GRB4:2:2,RGB565/555/444)、YUV(4:2:2)和YCbCr(4:2:2)输出格式;

  ◆支持VGA、CIF和从CIF到40×30的各种尺寸。

  

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/2583541.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2022-08-08
下一篇 2022-08-08

发表评论

登录后才能评论

评论列表(0条)

保存