在我的学术生涯中,我注意到系统理论是最难教和最难学的课程之一。这些极点和零点概念在课堂上都感觉很有意思,但是一旦学生想将它们与实验室中的物理电路联系起来,理论和实践之间就会出现鸿沟。在这篇文章中,我将尝试找出关于极点和零点的物理感觉,使用运算放大器来控制它们在复平面中的位置,并利用电路的自然响应来说明极点/零点位置的影响。
单端口电路的自然响应
我们来看图1中的无源线性单端口电路,它包括电阻、电容和电感。
图1:(a)无源单端口电路 (b)自然(或无源)开路响应vn(t)。
如果我们施加一个测试电流I(s),单端口电路将产生电压V(s),使得V(s)=Z(s)/(s),其中I(s)和V(s)是所施加电流和所产生电压的拉普拉斯变换,s是以sec-1为单位的复数频率。阻抗Z(s)是s的有理函数形式,即分子多项式N(s)与分母多项式D(s)的比值:
公式N(s)=0的根被称为Z(s)的零点,表示为z1,z2,……;而公式D(s)=0的根被称为Z(s)的极点,表示为p1、p2、……。极点和零点统称为根,也称为临界频率。例如,阻抗:
当s=0时,其值为零;当s=-3±j4时,它具有复共轭极点对。可以用根来表达它,即:
如果我们绘制|Z(s)|相对于s的幅度曲线,则可以直观理解零点和极点的含义。所得到的曲线就好像在s平面上竖起的帐篷,在零点处接触s平面,而在极点处其高度变为无限。
图2:Z(s)=(10Ω)s/(s2+6s+25)的幅度图。(通过在虚轴上计算|Z|获得的分布曲线图显示出单端口电路的交流响应。)
为了找到极点的物理感觉,我们在s接近极点pk时施加电流I(s),就可以用相当小的I(s)获得给定的电压V(s)。s越接近极点pk,获得给定电压V(s)所需的电流I(s)越小。在s→pk的极限状态下,即使电流为零,即开路,单端口电路也会获得一个非零的供电电压(见图1b)!这个电压称为自然响应或无源响应,因为单端口电路可利用储存在其电容和电感内部的能量来产生电压。这些能量在电阻中消耗尽了,在无源单端口的情况下,它们将随时间呈指数级衰减。实际上,系统理论预测到自然响应符合以下表达式:
其中a1,a2,......,是取决于存储能量的合适系数(以V为单位),Z(s)的极点是指数中时间常数的倒数。
那么Z(s)的零点呢?我们来看图3,它表示图1的两种情况。现在施加的信号是电压V(s),而响应是电流I(s)=[1/Z(s)]V(s),这表明Z(s)的零点现在成为1/Z(s)的极点。通过双重推理,在s→zk的极限状态下,即使施加零电压(短路),单端口电路也将提供非零电流(参见图3b)!该电流称为自然响应或无源响应,因为单端口电路利用储存在其电容和电感内部的能量来产生电流。系统理论预测自然短路电流响应符合以下表达式:
其中b1,b2,......,是取决于存储能量的合适系数(以安培为单位),Z(s)的零点是指数中时间常数的倒数。
图3:(a)无源单端口电路(b)自然(或无源)短路响应in(t)。
总而言之,单端口电路的自然响应由其阻抗Z(s)的根控制:极点控制开路电压响应vn(t),而零点控制短路电流响应in(t)。在某种程度上,根就像是单端口电路的DNA。例如,我们来看图4的单端口电路。在t=0时,电容两端的电压为9V,顶部为正,t>0时它的自然响应是什么?可以看出单端口电路呈现的阻抗是:
显然,z1=–1/(R1C)=-1/(10ms),p1=-1/[(R1+R2)C]=-1/(30ms)。此外,a1=[20/(10+20)]9=6V且b1=9/10=0.9mA。所以:
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)