如何改造低频ISM RF发送器以支持高频应用

如何改造低频ISM RF发送器以支持高频应用,第1张

低频(300MHz至450MHz) ISM RF发送器已广泛用于欧洲434MHz市场,这也是美国260MHz至470MHz频段的重要频点。本文介绍了如何使用现有的低频段RF IC构建868MHz发送器,以支持欧洲868MHz至870MHz免授权频段应用。本文重点讨论了一系列测试,分析采用一个或多个设计用于300MHz至450MHz ISM频段的RF发送器在868MHz频率下所能提供的发射功率。

理论挑战

对于大多数低频ISM发射器,其开关功率放大器(PA)产生的二次谐波仅比基波频率低3dB。如果允许牺牲部分效率和功率性能,是否可以采用设计用于434MHz的IC来构建868MHz ASK发送器呢?由于相位噪声密度仅仅满足欧洲电信标准协会(ETSI)对于欧洲434MHz免授权波段的带外辐射标准要求,该相位噪声密度无法满足868MHz频段更为严格的要求。但这并不意味着设计868MHz ASK发送器没有任何价值。一些用户可能只需要很低的发射功率,或者只需对低频段IC的振荡器进行一些修改,并不需要进行全新的设计。

开关功率放大器的RF频谱

大多数低频ISM RF发送器中,开关功率放大器会产生占空比为0.25的周期脉冲,该脉冲序列的周期即为载波周期。理论上,脉冲序列的频谱是一组位于载频整数倍频点、以均匀间隔排列的谱线。每条谱线的幅度由函数sinc (sinx/x)加权,其中在4倍载频的整数倍频点处,幅度为零。图1给出了434MHz载波频谱的前六次谐波。868MHz分量(二次谐波)仅比基频434MHz低3dB。事实上,电路中的开关放大器只是驱动一个调谐电路,而电路特性主要取决于对基频谐波的抑制能力。如果调谐电路具有相对较宽的频带,那么它在868MHz处的辐射功率与基频功率的差值就会小于3dB。

如何改造低频ISM RF发送器以支持高频应用,如何改造低频ISM RF发送器以支持高频应用,第2张

图1. 434MHz频点处,25%占空比RF脉冲的基波与谐波理论功率

将MAX7044EVKIT的谐波滤波器去掉,同时将偏置电感更改为62nH (这个值与2pF至2.5pF的寄生电容产生谐振),可以在此评估板上验证3dB的差异。由L-C组成的谐振电路具有较宽的频带。因此,当功率放大器输出直接连接到50Ω负载时,不会大幅衰减868MHz处的谐波。图2所示为频谱分析仪在434MHz和868MHz频点的显示结果。868MHz分量比434MHz分量低3.5dB,这说明谐振电路衰减了0.5dB。

如何改造低频ISM RF发送器以支持高频应用,如何改造低频ISM RF发送器以支持高频应用,第3张

图2. MAX7044EVKIT的ISM发送器工作在434MHz时的频谱

下一步是修改匹配网络以增强868MHz二次谐波,并衰减434MHz基频。

修改天线匹配电路以支持868MHz系统

434MHz匹配网络拓扑

利用已有的434MHz频段拓扑结构对MAX7044EVKIT进行修改,使其支持868MHz频点应用。所有ISM RF发送器评估板的匹配网络在300MHz至450MHz频段具有相同的拓扑结构,如图3所示。图中器件标号与MAX7044EVKIT评估板标示相同。

如何改造低频ISM RF发送器以支持高频应用,如何改造低频ISM RF发送器以支持高频应用,第4张

图3. MAX7044EVKIT的匹配网络和器件标号

采用这种拓扑结构时,有多种方法可以将电路匹配至50Ω负载。最直接的方法是将C2-L3-C6的π型网络配置为50Ω低通滤波器来抑制谐波。然后,使用C1-L1组成的“L”型窄带阻抗变换网络将50Ω变换到高阻。除了280MHz至450MHz、可编程发送器MAX7044和MAX7060外,所有Maxim ISM RF低频段发送器在驱动125Ω至250Ω负载时的功效是最高的。MAX7044在低频驱动50Ω至60Ω负载时具有最高发射功率(2.7V供电时为13dBm)。增大发送器功率放大器输出端的阻抗,可以降低发射功率和供电电流。正常工作在低频时,选择电感和电容用于匹配功率放大器在设计频率下要求的阻抗。对于MAX7044EVKIT,LC网络在433.92MHz时能够很好地匹配在50Ω负载。

以下实验的目的是改变433.92MHz评估板的匹配网络(使其在868MHz下能够很好地匹配),同时降低其在434MHz频点的发射功率。

功率放大器输出电路调谐至868MHz

设计868MHz频率下的匹配电路,第一步是尝试可行的、最简单的匹配方案,即功率放大器输出端连接至50Ω电阻的868MHz谐振电路。这种方式用于产生图1中的基线频谱。然而,这种情况下,偏置电感与功率放大器引脚的寄生电容谐振工作在868MHz (而不是434MHz)。如配置为图4所示原理图,MAX7044EVKIT功率放大器偏置电感需由62nH (434MHz谐振电路)改为16nH (868MHz谐振电路)。另外,移除π型网络中的并联电容,将串联电感替换为0Ω电阻。最后,将π型网络与偏置电感之间的串联电容C1改为47pF,作为868MHz的隔直电容。

如何改造低频ISM RF发送器以支持高频应用,如何改造低频ISM RF发送器以支持高频应用,第5张

图4. MAX7044EVKIT工作在868MHz时的简单谐振电路匹配网络

下面列出了434MHz基频及前4次谐波的功率测量值。图5给出了434MHz和868MHz处的频谱分量,频率值四舍五入至最接近的1MHz内。

VDD = 2.7V,I = 16.83mA,IPLL = 2.06mA,IPA = I –IPLL = 14.77mA
P(434MHz) = +9.0dBm
P(868MHz) = +8.65dBm
P(1302MHz) = +4.5dBm
P(1736MHz) = -3.0dBm

功率放大器总效率(全部四个频点的功率/(VDD &TImes; IPA)) = 46.6%
868MHz频点处功率放大器的效率 = 18.4%。

如何改造低频ISM RF发送器以支持高频应用,如何改造低频ISM RF发送器以支持高频应用,第6张

图5. MAX7044EVKIT谐振电路调谐至868MHz时的频谱

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/2590836.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2022-08-08
下一篇 2022-08-08

发表评论

登录后才能评论

评论列表(0条)

保存