模数转换器高测量精度以及误差分析

模数转换器高测量精度以及误差分析,第1张

模数转换器(亦称为ADC)广泛用于各种应用中,尤其是需要处理模拟传感器信号的测量系统,比如测量压力、流量、速度和温度的数据采集系统(仅举数例)。一般而言,这些信号属于时域签名, 以脉冲或阶跃函数的形式出现。

在任何设计中,理解这些类型应用的总系统精度始终都是非常重要的,尤其是那些需要对波形中极小的灵敏度和变化进行量化的 系统。理想情况下,施加于信号链输入端的每一个伏特都由ADC 以数字表示一个伏特的输出。但是,事实并非如此。所有转换器 和信号链都存在与此相关的有限数量误差。

本文描述与模数转换器本身相关的误差。本文还将揭示转换器内 部的不精确性累积到何种程度即会导致这些误差。定义新设计的 系统参数时,若测量精度极为重要,那么这些内容对于理解如何 正确指定一个ADC有着重要作用。最后,本文将讨论一个简单的 误差分析,帮助为设计选择正确的转换器。

ADC的不精确性

无论何种信号链,转换器都是系统的基本要素。为设计选择的任 何ADC都会决定系统的总精度。换言之,系统精度不可能高于转 换器的最低有效位(LSB)大小。为了表明这一点,让我们来看一个 简短的ADC不精确性指南。

首先,注意到由于ADC不是理想的,并且分辨率有限,因此它们 在输出端只能显示有限数量的信息表示。表示的信息数量由转换 器满量程输入除以2N表示,N为转换器的理想位数。

 

模数转换器高测量精度以及误差分析,图1. ADC量化误差,第2张

 

图1. ADC量化误差

例如,假设选择一个12位ADC,则它可在输出端以4096个数字表 示施加于转换器输入端的任何信号。这些表示信息确实存在有限 量的误差。因此,如果12位ADC的输入满量程(VFS)为10 V p-p,那 么其理想情况下的LSB大小为2.44 mV p-p,精度为±1.22 mV。

模数转换器高测量精度以及误差分析,模数转换器高测量精度以及误差分析,第3张

公式1

而实际上,ADC是非理想的。在转换器内部存在一定噪声,

 

甚至直流中也有噪声。记住,1 kΩ电阻等效于4 nV∙ Hz (1 Hz带 宽,25°C)。注意,查看12位ADC数据手册时,SNR通常为大 约70 dB到72 dB。但是,根据下列公式,一个12位ADC理想情 况下应当具有74 dB:

SNR (dB) = 6.02 × N + 1.76

公式2

因此,实际上12位分辨率是无法达到的,因为转换器本身存在一 定的不精确性,如图2所示。

 

模数转换器高测量精度以及误差分析,图2. ADC的不精确性 ,第4张

 

图2. ADC的不精确性

这些不精确性或误差决定了转换器表示信号的效率,并最终为信 号链所接收。失调误差定义为传递函数无法通过零点的模拟值。 增益误差是失调误差为零时理想与实际传递函数之间的满量程数 值之差。通常意义上的线性度误差或非线性度是指零电平与满量 程之间的直线偏差,如图1所示。

有关ADC不精确性的更多信息

对最基本的模数转换器误差进行定义并有所了解后,再说明这些 误差的区别会有些帮助。大部分ADC的失调和增益都存在这种小 误差,通常可以忽略或通过外部模拟电路调节(消除),或者采用 数字技术校正。然而,诸如线性度、量化和温度系数等其他误差 无法轻易调节或消除。

模数转换器线性度只与转换器自身有关,即取决于架构和工艺变 化。有很多方法可以校正,但都很昂贵。设计人员有两种选择: 购买更好、成本更高的转换器,或采用数字手段校正线性度。数 字校正的成本也十分高昂。这意味着可能需要更多资源来指定 DSPFPGA,因为线性度会随温度和工艺的变化而改变。根据采 样速率、IF和分辨率,数字校正可能需要广泛的特性表述和查找 表,以便即时校正或调节ADC的性能。

线性度有两种类型的误差:它们是差分非线性和积分非线性, 通常分别称为DNL和INL。DNL定义为偏离理想值的一切误差或偏 差。换言之,它表示两个相邻代码的模拟差与理想代码值VFS/2N 之间的偏差。可将其看作与ADC的SNR性能相关的因素。随着代 码的偏差越来越大,转换数也随之下降。该误差在温度范围内的 界限为±0.5 LSB,可保证无失码。

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/2605321.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2022-08-09
下一篇 2022-08-09

发表评论

登录后才能评论

评论列表(0条)

保存