蒙特卡罗方法(MCM)的基本概念与应用介绍

蒙特卡罗方法(MCM)的基本概念与应用介绍,第1张

导读:蒙特卡罗方法MCM(Monte Carlo Method),也称随机抽样或统计模拟方法,是二十世纪四十年代中期由于科学技术的发展和电子计算机的发明,而被提出的一种以概率统计理论为指导的一类非常重要的数值计算方法。

提到蒙特卡罗(也有翻译成“蒙特卡洛”)一词,人们不禁想到摩纳哥的赌城。这两者之间有必然联系么?答案是:Exactly!

大家想想,赌博跟什么有关?首先想到的是随机性和概率性。对,那蒙特卡罗方法就是与概率论和数理统计有关。

MCM提出:

蒙特卡罗方法MCM于20世纪40年代美国在第二次世界大战中研制原子d的“曼哈顿计划”计划的成员S.M.乌拉姆和J.冯·诺伊曼(计算机之父)首先提出。数学家冯·诺伊曼用驰名世界的赌城—摩纳哥的MonteCarlo—来命名这种方法,为它蒙上了一层神秘色彩。在这之前,蒙特卡罗方法就已经存在。1777年,法国数学家布丰(Georges Louis Leclere de Buffon)提出用投针实验的方法求圆周率π。这被认为是蒙特卡罗方法的起源。

传统的经验方法由于不能逼近真实的物理过程,很难得到满意的结果,而蒙特卡罗方法MCM由于能够真实地模拟实际物理过程,故解决问题与实际非常符合,可以得到很圆满的结果。这也是以概率论和数理统计理论方法为基础的一种计算方法,是使用随机数(或更常见的伪随机数)来解决很多计算问题的方法。将所求解的问题同一定的概率模型相联系,用电子计算机实现统计模拟或抽样,以获得问题的近似解。为象征性地表明这一方法的概率统计特征,故借用赌城-蒙特卡罗命名。该命名既反映了该方法的部分内涵,又便于记忆,因此得到人们的普遍接受。

BTW:MonteCarlo一词来源于意大利语,是为了纪念王子摩纳哥查理三世。蒙特卡罗(MonteCarlo)虽然是个赌城,但很小,估计跟北京的一条街差不多大。

MCM概述:

蒙特卡罗方法MCM(Monte Carlo Method),也称随机抽样或统计模拟方法,是二十世纪四十年代中期由于科学技术的发展和电子计算机的发明,而被提出的一种以概率统计理论为指导的一类非常重要的数值计算方法。是指使用随机数(或伪随机数)来解决很多计算问题的方法。与它对应的是确定性算法。蒙特卡罗方法在金融工程学,宏观经济学,计算物理学(如粒子输运计算、量子热力学计算、空气动力学计算)以及人工智能机器学习等领域应用广泛。

MCM基本思想:

当所求解问题是某种随机事件出现的概率,或者是某个随机变量的期望值时,通过某种“实验”的方法,以这种事件出现的频率估计这一随机事件的概率,或者得到这个随机变量的某些数字特征,并将其作为问题的解。

有一类问题的维数(变量个数)可能高达数百甚至数千,解题难度随维数的增加呈指数增长,这就是所谓的维数的灾难(Curse of Dimensionality)。即使使用速度最快的计算机,传统的数值计算方法也难以对付,但蒙特卡罗方法MCM的计算复杂性不再依赖于维数,MCM能很好地用来对付维数的灾难。为提高方法的效率,科学家们提出了许多所谓的“方差缩减”技巧。

另一类形式与蒙特卡罗方法MCM相似,但理论基础不同的方法—“拟蒙特卡罗方法”(Quasi-Monte Carlo方法)—近年来也获得迅速发展。我国数学家华罗庚、王元提出的“华—王”方法即是其中的一例。这种方法的基本思想是“用确定性的超均匀分布序列(Low DiscrepancySequences)代替蒙特卡罗方法MCM中的随机数序列。该方法对某些问题的求解比蒙特卡罗方法MCM计算速度上提高数百倍,计算精度上也有很大提高。

MCM基本原理

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/2610101.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2022-08-10
下一篇 2022-08-10

发表评论

登录后才能评论

评论列表(0条)

保存