小波分析是近十几年来发展起来的一种新的数学理论和方法,目前已被成功地应用于许多领域。作为一种新的时频分析方法,小波分析由于具有多分辨分析的特点,能够聚焦到信号的任意细节进行多分辨率的时频域分析,因而被誉为“数学显微镜”。
本文主要介绍小波分解与重构法、非线性小波变换阈值法、平移不变量小波法以及小波变换模极大值法这4种常用的小波去噪方法。将它们分别用于仿真算例的去噪处理,并对这几种方法的应用场合、去噪性能、计算速度和影响因素等方面进行比较,最后对小波去噪方法选择加以总结。
1、小波分解与重构法去噪本质上相当于一个具有多个通道的带通滤波器,主要适用于有用信号和噪声的频带相互分离时的确定性噪声的情况。在这种情况下,该方法能基本去除噪声,去噪效果很好。但对于有用信号和噪声的频带相互重叠的情况(如信号混有白噪声),效果就不甚理想。
优点:
算法简单明了,计算速度快。若N为信号的长度,则它的计算速度是O(N)。欢迎分享,转载请注明来源:内存溢出
评论列表(0条)