基于DSP与FPGA的蓝牙数据采集系统设计,数据采集系统广泛地应用于工业、国防、图像处理、信号检测等领域。DSP处理器是一种高速的数字信号处理器
数据采集系统广泛地应用于工业、国防、图像处理、信号检测等领域。DSP处理器是一种高速的数字信号处理器,蓝牙技术作为一种低成本、低功耗、近距离的无线通信技术,已广泛应用于许多行业和领域[1]。本设计采用了DSP与FPGA协同控制处理,并用蓝牙传输代替有线电缆传输,有效地解决了DSP和FPGA单独处理的不足与有线电缆传输的弊端,大大提高了数据采集处理能力,拓宽了系统在环境较为恶劣或特殊场所的应用。
1.1系统总体设计
基于DSP与FPGA的蓝牙数据采集系统由下位机和上位机两部分组成。其中下位机主要由前端传感器、信号调理电路、ADC模数转换电路、DSP与FPGA协同处理模块以及蓝牙模块组成,主要完成前端数据的采集、转换、处理等功能,并将处理后的数据传输给上位机;上位机主要由USB蓝牙适配器和PC机组成,完成数据的显示、监控、存储等功能,并向下位机发送命令。该系统主要实现现场数据高精度、高速度、多通道实时采集,利用蓝牙的无线传输特性实现数据的无线传输。系统硬件框图如图1所示。
本系统中,DSP与FPGA协同控制处理是系统的核心部分,通过动作指令控制前端调理模块进行数据采集,同时将采集到的数据经DSP和FPGA协同处理,后由蓝牙模块将数据传输给上位机,由上位机完成后续的相应处理工作。
1.2 前端调理模块
前端调理电路主要包括传感器、信号调理电路、ADC模数转换模块。
信号调理电路包括模拟信号调理电路和数字信号调理电路。其模拟信号调理主要实现对模拟信号的缓冲、放大、衰减、隔离、滤波以及线性化等处理,以获得ADC所需要的归一化信号;数字信号调理主要完成对数字信号的整形、分频、隔离、缓冲等处理,以便与FPGA模块相连。
前端调理电路的核心是模数转换,对于模拟信号,传感器采集的信号经调理后需要进行模数转换,然后与FPGA相连。而数字信号则经过调理后可直接与FPGA相连。模数转换模块采用TI公司的高速、低功耗、6通道同步采样的16位模数转换器ADS8364。ADS8364采用+5 V工作电压,具有80 dB共模抑制能力的全差分输入通道,6个模拟输入通道(分为A,B,C 3组)可以同时并行采样和转换[2]。考虑到FPGA可以灵活地改变时钟频率,进而改变系统的采样频率,所以ADS8364由FPGA提供时钟和复位信号,最高频率为5 MHz,其相应采样频率为250 kHz。同时FPGA还为ADS8364提供信号。A/D转换结束后产生转换结束信号,通过FPGA引发DSP的中断。在转换结束后,FPGA将6个16位的转换结果读入SDRAM中。ADS8364的地址/模式信号(A0,A1,A2)决定ADS8364的单通道、周期或FIFO模式的数据读取方式。将ADD引脚置为高电平,使得读出的数据中包括转换通道信息。在系统中,采用FPGA实现ADS8364的接口控制电路,ADS8364转换数据通过FPGA存在SDRAM中。
本系统中,ADS8364、FPGA、DSP与SDRAM的接口连接如图2所示。
1.3 DSP与FPGA协同处理模块
DSP和FPGA协同处理模块是本系统的核心,其主要完成对ADS8364的控制、数据的计算以及相应的逻辑控制,并通过蓝牙完成数据的传输。由于数据采集要求采集数据量大,多路信号同时采集,要求实时性好、速度快、精度高等,本系统采用基于DSP与FPGA协同处理。系统设计中,采用TI公司的DSP芯片TMS320F2812和Altera公司的FPGA芯片EP2C5。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)