智能控制是什么
智能控制(intelligent controls)在无人干预的情况下能自主地驱动智能机器实现控制目标的自动控制技术。对许多复杂的系统,难以建立有效的数学模型和用常规的控制理论去进行定量计算和分析,而必须采用定量方法与定性方法相结合的控制方式。
定量方法与定性方法相结合的目的是,要由机器用类似于人的智慧和经验来引导求解过程。因此,在研究和设计智能系统时,主要注意力不放在数学公式的表达、计算和处理方面,而是放在对任务和现实模型的描述、符号和环境的识别以及知识库和推理机的开发上,即智能控制的关键问题不是设计常规控制器,而是研制智能机器的模型。
此外,智能控制的核心在高层控制,即组织控制。高层控制 是对实际环境或过程进行组织、决策和规划,以实现问题求解。为了完成这些任务,需要采用符号信息处理、启发式程序设计、知识表示、自动推理和决策等有关技术。这些问题求解过程与人脑的思维过程有一定的相似性,即具有一定程度的“智能”。
随着人工智能和计算机技术的发展,已经有可能把自动控制和人工智能以及系统科学中一些有关学科分支(如系统工程、系统学、运筹学、信息论)结合起来,建立一种适用于复杂系统的控制理论和技术。智能控制正是在这种条件下产生的。它是自动控制技术的最新发展阶段,也是用计算机模拟人类智能进行控制的研究领域。
智能控制是以控制理论、计算机科学、人工智能、运筹学等学科为基础,扩展了相关的理论和技术,其中应用较多的有模糊逻辑、神经网络、专家系统、遗传算法等理论和自适应控制、自组织控制、自学习控制等技术。
智能控制与传统控制的区别
控制界在近年来的共识认为控制器的设计从信息科学的层面看,其核心是控制算法的设计,控制算法主要根据系统的输入与输出信息、 系统及其可能产生变化的信息、系统工作环境的信息,以及对系统所提任务和要求变化的信息,经过采集、加工、分析、计算以形成系统能接受并可据此进行工作的控制命令。控制命令的形成,一个是对形成命令所需信息的齐备,这中间首先是对控制对象的认知,即对系统进行建模,而对无论是输入、输出、环境变化等一系列信息的认知都涉及到信息采集与加工、信息的传输等。无论关于建模等为控制命令的形成所需的信息准备工作,还是在信息相对齐备后形成控制命令的过程,都包含了各种必须行之有效的计算机算法。这些算法由于问题的特点,既可以是传统的也可以是智能的,这自然取决于使用这些算法的具体条件与要求。
传统的自动控制是建立在确定的模型基础上的,而智能控制的研究对象则存在模型严重的不确定性,即模型未知或知之甚少者模型的结构和参数在很大的范围内变动,比如工业过程的病态结构问题、某些干扰的无法预测,致使无法建立其模型,这些问题对基于模型的传统自动控制来说很难解决
传统的控制理论对线性问题有较成熟的理论,而对高度非线性的控制对象虽然有一些非线性方法可以利用,但不尽人意。 而智能控制为解决这类复杂的非线性问题找到了一个出路,成为解决这类问题行之有效的途径。 工业过程智能控制系统除具有上述几个特点外,又有另外一些特点,如被控对象往往是动态的,而且控制系统在线运动,一般要求有较高的实时响应速度等,恰恰是这些特点又决定了它与其它智能控制系统如智能机器人系统、航空航天控制系统、交通运输控制系统等的区别,决定了它的控制方法以及形式的独特之处。
传统的自动控制系统的输入或输出设备与人及外界环境的信息交换很不方便,希望制造出能接受印刷体、图形甚至手写体和口头命令等形式的信息输入装置,能够更加深入而灵活地和系统进行信息交流,同时还要扩大输出装置的能力,能够用文字、图纸、立体形象、语言等形式输出信息。 另外,通常的自动装置不能接受、分析和感知各种看得见、听得着的形象、声音的组合以及外界其它的情况。 为扩大信息通道,就必须给自动装置安上能够以机械方式模拟各种感觉的精确的送音器,即文字、声音、物体识别装置。 可喜的是,近几年计算机及多媒体技术的迅速发展,为智能控制在这一方面的发展提供了物质上的准备,使智能控制变成了多方位“立体”的控制系统.
与传统自动控制系统相比,,智能控制系统具有足够的关于人的控制策略、被控对象及环境的有关知识以及运用这些知识的能力;智能控制系统能以知识表示的非数学广义模型和以数学表示的混合控制过程,采用开闭环控制和定性及定量控制结合的多模态控制方式;智能控制系统有补偿及自修复能力和判断决策能力。智能控制则采取的是全新的思路。它采取了人的思维方式,建立逻辑模型,使用类似人脑的控制方法来进行控制。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)