EPS节能方案

EPS节能方案,第1张

引言

  当今能源浪费的问题已成为国内外越来越关注的问题,它反映在以下几个方面:

  a 使用矿物燃料的能源资源是有限的,获取能源的成本也在增加,矿物燃料的消耗也带来其它负面影响(即环境污染),而可替代能源资源还没有成热。

  b 所有的家电产品和电子设备都要消耗电力。

  c 不断增长的个人用电子产品通过使用适配器和充电器——外部电源(EPS)——也在消耗能源外部电源。

1 节能理念来推动或重新设计

  电源在轻载时的高效率是关键因素。工作模式的效率是当电源工作在25%、50%、75%及100%负载时效率的平均值:在整个负载范围内持续的高效率比重载时的高效率更加重要;最理想的控制方案是随负载的降低频率也相应地降低。

  为了解决电源系统提供更高的能量利用效率,国际上颁布了许多标准,如国际能源署“1W计划”、美国新版能源之星、美国80 PLUS等。

  新的外部电源(EPS)能效标准:适用于所有功率从小于1W到250W的单路输出的外部电源(EPS);等同于EnergyStar(EPA)标准(CEC,CECP,AGO,EU);同时适用于AC-DC和AC-AC适配器及充电器;美国其它的州也会用此的标准/法规正在进行中;中国CECP标准从2005年1月1日开始生效;在澳大利亚从2006年4月1日开始生效;欧盟从2007年1月1日也将采用标准中工作模式时的相应规定。

  随着这些新标准的出台,对电源设计有了新的挑战。为此,需要有新的举措来面对新的挑战。首先是那就是要用节能理念来推动或重新设计。即节能已成为一个重要的设计要求;而今60%的现有方案都无法满足新标准的要求;关于外部电源(EPS)的节能标准已经颁布;不少公司新推出的产品系列能令您的设计符合所有日前及提议中的标准。再则要用新技术来应对设计挑战,如为了降低待机模式的能耗,安森美半导体则侧重于其他技术,如跳周期待机模式,PWM控制器主控PFC(轻载时关断PFC以降低待机能耗)。此外,将诸多新技术和功能集成到芯片内,如DDS(动态自供电)、频率抖动、Soxy-less(无线圈去磁检测)等,可起到简化外围电路设计的作用,也相应减少了功率损耗值此仅就选择节能芯片和利用利用智能电源管理技术节省能源二个方面来研对。

2 节能芯片的选择

2.1 LinkSwitch-LP器件特点及工作方式

2.1.1 LinkSwitch-LP系列的产品特性

  易于设计、外围元件数目很少的解决方案;原边电路控制器在负载超过峰值功率点时限制了输出电流——无需电流检测电阻;完善的故障保护——过热、短路及开环;可在通用输入电压范围(85-265VAC)内 *** 作;图1为典型应用的非而简化电路(a)及输出特性(b)。突出的特点是节能技术:无需任何附加元件,轻松达到全球所有的节能标准;在265VAC输入时的空载能耗<150mW;开/关控制可在极轻负载时具备恒定的效率——是达到强制性CEC标准的理想选择。

2.1.2 LinkSwitch-LP的系统成本优势

  从图1可知那就是:频率抖动降低了EMI,采用简单的EMI滤波;电感即用于滤波又用于保险丝功能,见图1中A点部分;内部高压恒流源省去了启动和偏置电路,见图1中B点部分; 内部电流检测电路省去了外围的电流检测电阻见图1中c点部分;严格的器件参数公差,低的限流点,允许初级绕组上不使用箱位电路,见图1中D点部分;低成本的变压器反馈稳压,见图1中E点部分;输出电压由分压电阻决定,有精确的FB脚电压见,图1中F点部分;开/关 *** 作不需要频率补偿元件,见图1中G点部分。针对有最低成本要求,且对恒压/恒流要求宽松的应用进行了优化。

EPS节能方案,第2张

2.2 典型应用

  图2显示的是一个典型的用LNK564IC构成的6V330mA恒压/恒流(CV/CC)输出电源电路的替代方案。值此对方案特点作一分析。

EPS节能方案,第3张

2.2.1 输入电路

  AC输入差模滤波可由C1和L1形成的极低成本的输入滤波器得以实现。LNK564的频率抖动特性省去输入pi(C、L、C)滤波元件,仅需要一个大容量电容。加上一个套管还可使输入电感L1既用作保险丝,又用作一个滤波元件。这一简单的Filterfuse(滤波保险丝)输入级更进一步地降低了系统成本。

  另一个可选方案是用一个保险丝电阻RFl来提供保险丝的功能。

  在某些应用中如果允许EMI的裕量较低及/或降低的输入耐浪涌能力,那么可以从中线上取掉输入二极管D2。在这类应用中,D1需要是一个耐压为800V的二极管。

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/2669815.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2022-08-14
下一篇 2022-08-14

发表评论

登录后才能评论

评论列表(0条)